MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptclsg Structured version   Visualization version   GIF version

Theorem ptclsg 21466
Description: The closure of a box in the product topology is the box formed from the closures of the factors. The proof uses the axiom of choice; the last hypothesis is the choice assumption. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
ptcls.2 𝐽 = (∏t‘(𝑘𝐴𝑅))
ptcls.a (𝜑𝐴𝑉)
ptcls.j ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
ptcls.c ((𝜑𝑘𝐴) → 𝑆𝑋)
ptclsg.1 (𝜑 𝑘𝐴 𝑆AC 𝐴)
Assertion
Ref Expression
ptclsg (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝑅(𝑘)   𝑆(𝑘)   𝐽(𝑘)   𝑉(𝑘)   𝑋(𝑘)

Proof of Theorem ptclsg
Dummy variables 𝑓 𝑔 𝑢 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcls.a . . . . 5 (𝜑𝐴𝑉)
2 ptcls.j . . . . . 6 ((𝜑𝑘𝐴) → 𝑅 ∈ (TopOn‘𝑋))
3 topontop 20766 . . . . . 6 (𝑅 ∈ (TopOn‘𝑋) → 𝑅 ∈ Top)
42, 3syl 17 . . . . 5 ((𝜑𝑘𝐴) → 𝑅 ∈ Top)
5 ptcls.c . . . . . . 7 ((𝜑𝑘𝐴) → 𝑆𝑋)
6 toponuni 20767 . . . . . . . 8 (𝑅 ∈ (TopOn‘𝑋) → 𝑋 = 𝑅)
72, 6syl 17 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑋 = 𝑅)
85, 7sseqtrd 3674 . . . . . 6 ((𝜑𝑘𝐴) → 𝑆 𝑅)
9 eqid 2651 . . . . . . 7 𝑅 = 𝑅
109clscld 20899 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
114, 8, 10syl2anc 694 . . . . 5 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝑅))
121, 4, 11ptcldmpt 21465 . . . 4 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘(∏t‘(𝑘𝐴𝑅))))
13 ptcls.2 . . . . 5 𝐽 = (∏t‘(𝑘𝐴𝑅))
1413fveq2i 6232 . . . 4 (Clsd‘𝐽) = (Clsd‘(∏t‘(𝑘𝐴𝑅)))
1512, 14syl6eleqr 2741 . . 3 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽))
169sscls 20908 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
174, 8, 16syl2anc 694 . . . . 5 ((𝜑𝑘𝐴) → 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
1817ralrimiva 2995 . . . 4 (𝜑 → ∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆))
19 ss2ixp 7963 . . . 4 (∀𝑘𝐴 𝑆 ⊆ ((cls‘𝑅)‘𝑆) → X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2018, 19syl 17 . . 3 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆))
21 eqid 2651 . . . 4 𝐽 = 𝐽
2221clsss2 20924 . . 3 ((X𝑘𝐴 ((cls‘𝑅)‘𝑆) ∈ (Clsd‘𝐽) ∧ X𝑘𝐴 𝑆X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
2315, 20, 22syl2anc 694 . 2 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) ⊆ X𝑘𝐴 ((cls‘𝑅)‘𝑆))
24 vex 3234 . . . . . . . 8 𝑢 ∈ V
25 eqeq1 2655 . . . . . . . . . 10 (𝑥 = 𝑢 → (𝑥 = X𝑦𝐴 (𝑔𝑦) ↔ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
2625anbi2d 740 . . . . . . . . 9 (𝑥 = 𝑢 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2726exbidv 1890 . . . . . . . 8 (𝑥 = 𝑢 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦))))
2824, 27elab 3382 . . . . . . 7 (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ↔ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)))
29 nffvmpt1 6237 . . . . . . . . . . . . . . . . . 18 𝑘((𝑘𝐴𝑅)‘𝑦)
3029nfel2 2810 . . . . . . . . . . . . . . . . 17 𝑘(𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)
31 nfv 1883 . . . . . . . . . . . . . . . . 17 𝑦(𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)
32 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → (𝑔𝑦) = (𝑔𝑘))
33 fveq2 6229 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑘 → ((𝑘𝐴𝑅)‘𝑦) = ((𝑘𝐴𝑅)‘𝑘))
3432, 33eleq12d 2724 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑘 → ((𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘)))
3530, 31, 34cbvral 3197 . . . . . . . . . . . . . . . 16 (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘))
36 simpr 476 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐴) → 𝑘𝐴)
37 eqid 2651 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴𝑅) = (𝑘𝐴𝑅)
3837fvmpt2 6330 . . . . . . . . . . . . . . . . . . 19 ((𝑘𝐴𝑅 ∈ (TopOn‘𝑋)) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
3936, 2, 38syl2anc 694 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐴) → ((𝑘𝐴𝑅)‘𝑘) = 𝑅)
4039eleq2d 2716 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐴) → ((𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ (𝑔𝑘) ∈ 𝑅))
4140ralbidva 3014 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑘𝐴 (𝑔𝑘) ∈ ((𝑘𝐴𝑅)‘𝑘) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4235, 41syl5bb 272 . . . . . . . . . . . . . . 15 (𝜑 → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ↔ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
4342anbi2d 740 . . . . . . . . . . . . . 14 (𝜑 → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4443adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦)) ↔ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)))
4544biimpa 500 . . . . . . . . . . . 12 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅))
46 ptclsg.1 . . . . . . . . . . . . . . . 16 (𝜑 𝑘𝐴 𝑆AC 𝐴)
4746ad2antrr 762 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑘𝐴 𝑆AC 𝐴)
48 simpll 805 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝜑)
49 vex 3234 . . . . . . . . . . . . . . . . . . . . . 22 𝑓 ∈ V
5049elixp 7957 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)))
5150simprbi 479 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
5251ad2antlr 763 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆))
539clsndisj 20927 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) ∧ ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘))) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
5453ex 449 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ Top ∧ 𝑆 𝑅 ∧ (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆)) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
55543expia 1286 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
564, 8, 55syl2anc 694 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐴) → ((𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5756ralimdva 2991 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (∀𝑘𝐴 (𝑓𝑘) ∈ ((cls‘𝑅)‘𝑆) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅)))
5848, 52, 57sylc 65 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
59 simprlr 820 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)
60 simprr 811 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑦𝐴 (𝑔𝑦))
6132cbvixpv 7968 . . . . . . . . . . . . . . . . . . . . 21 X𝑦𝐴 (𝑔𝑦) = X𝑘𝐴 (𝑔𝑘)
6260, 61syl6eleq 2740 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → 𝑓X𝑘𝐴 (𝑔𝑘))
6349elixp 7957 . . . . . . . . . . . . . . . . . . . . 21 (𝑓X𝑘𝐴 (𝑔𝑘) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6463simprbi 479 . . . . . . . . . . . . . . . . . . . 20 (𝑓X𝑘𝐴 (𝑔𝑘) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
6562, 64syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘))
66 r19.26 3093 . . . . . . . . . . . . . . . . . . 19 (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) ↔ (∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅 ∧ ∀𝑘𝐴 (𝑓𝑘) ∈ (𝑔𝑘)))
6759, 65, 66sylanbrc 699 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)))
68 ralim 2977 . . . . . . . . . . . . . . . . . 18 (∀𝑘𝐴 (((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ((𝑔𝑘) ∩ 𝑆) ≠ ∅) → (∀𝑘𝐴 ((𝑔𝑘) ∈ 𝑅 ∧ (𝑓𝑘) ∈ (𝑔𝑘)) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
6958, 67, 68sylc 65 . . . . . . . . . . . . . . . . 17 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
70 rabn0 3991 . . . . . . . . . . . . . . . . . . 19 ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
71 dfin5 3615 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)}
72 inss2 3867 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑆
73 ssiun2 4595 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝐴𝑆 𝑘𝐴 𝑆)
7472, 73syl5ss 3647 . . . . . . . . . . . . . . . . . . . . . 22 (𝑘𝐴 → ((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆)
75 sseqin2 3850 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔𝑘) ∩ 𝑆) ⊆ 𝑘𝐴 𝑆 ↔ ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7674, 75sylib 208 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝐴 → ( 𝑘𝐴 𝑆 ∩ ((𝑔𝑘) ∩ 𝑆)) = ((𝑔𝑘) ∩ 𝑆))
7771, 76syl5eqr 2699 . . . . . . . . . . . . . . . . . . . 20 (𝑘𝐴 → {𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} = ((𝑔𝑘) ∩ 𝑆))
7877neeq1d 2882 . . . . . . . . . . . . . . . . . . 19 (𝑘𝐴 → ({𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)} ≠ ∅ ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
7970, 78syl5bbr 274 . . . . . . . . . . . . . . . . . 18 (𝑘𝐴 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ((𝑔𝑘) ∩ 𝑆) ≠ ∅))
8079ralbiia 3008 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
8169, 80sylibr 224 . . . . . . . . . . . . . . . 16 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆))
82 nfv 1883 . . . . . . . . . . . . . . . . 17 𝑦𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆)
83 nfiu1 4582 . . . . . . . . . . . . . . . . . 18 𝑘 𝑘𝐴 𝑆
84 nfcv 2793 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝑔𝑦)
85 nfcsb1v 3582 . . . . . . . . . . . . . . . . . . . 20 𝑘𝑦 / 𝑘𝑆
8684, 85nfin 3853 . . . . . . . . . . . . . . . . . . 19 𝑘((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8786nfel2 2810 . . . . . . . . . . . . . . . . . 18 𝑘 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
8883, 87nfrex 3036 . . . . . . . . . . . . . . . . 17 𝑘𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
89 fveq2 6229 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦 → (𝑔𝑘) = (𝑔𝑦))
90 csbeq1a 3575 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑦𝑆 = 𝑦 / 𝑘𝑆)
9189, 90ineq12d 3848 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → ((𝑔𝑘) ∩ 𝑆) = ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9291eleq2d 2716 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → (𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ 𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9392rexbidv 3081 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑦 → (∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∃𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9482, 88, 93cbvral 3197 . . . . . . . . . . . . . . . 16 (∀𝑘𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
9581, 94sylib 208 . . . . . . . . . . . . . . 15 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
96 eleq1 2718 . . . . . . . . . . . . . . . 16 (𝑧 = (𝑦) → (𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9796acni3 8908 . . . . . . . . . . . . . . 15 (( 𝑘𝐴 𝑆AC 𝐴 ∧ ∀𝑦𝐴𝑧 𝑘𝐴 𝑆𝑧 ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
9847, 95, 97syl2anc 694 . . . . . . . . . . . . . 14 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → ∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
99 ffn 6083 . . . . . . . . . . . . . . . 16 (:𝐴 𝑘𝐴 𝑆 Fn 𝐴)
100 nfv 1883 . . . . . . . . . . . . . . . . . 18 𝑦(𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)
10186nfel2 2810 . . . . . . . . . . . . . . . . . 18 𝑘(𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)
102 fveq2 6229 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑦 → (𝑘) = (𝑦))
103102, 91eleq12d 2724 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑦 → ((𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)))
104100, 101, 103cbvral 3197 . . . . . . . . . . . . . . . . 17 (∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆) ↔ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆))
105 ne0i 3954 . . . . . . . . . . . . . . . . . 18 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) → X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅)
106 vex 3234 . . . . . . . . . . . . . . . . . . 19 ∈ V
107106elixp 7957 . . . . . . . . . . . . . . . . . 18 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ↔ ( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)))
108 ixpin 7975 . . . . . . . . . . . . . . . . . . . 20 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
10961ineq1i 3843 . . . . . . . . . . . . . . . . . . . 20 (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) = (X𝑘𝐴 (𝑔𝑘) ∩ X𝑘𝐴 𝑆)
110108, 109eqtr4i 2676 . . . . . . . . . . . . . . . . . . 19 X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆)
111110neeq1i 2887 . . . . . . . . . . . . . . . . . 18 (X𝑘𝐴 ((𝑔𝑘) ∩ 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
112105, 107, 1113imtr3i 280 . . . . . . . . . . . . . . . . 17 (( Fn 𝐴 ∧ ∀𝑘𝐴 (𝑘) ∈ ((𝑔𝑘) ∩ 𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
113104, 112sylan2br 492 . . . . . . . . . . . . . . . 16 (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11499, 113sylan 487 . . . . . . . . . . . . . . 15 ((:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
115114exlimiv 1898 . . . . . . . . . . . . . 14 (∃(:𝐴 𝑘𝐴 𝑆 ∧ ∀𝑦𝐴 (𝑦) ∈ ((𝑔𝑦) ∩ 𝑦 / 𝑘𝑆)) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
11698, 115syl 17 . . . . . . . . . . . . 13 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ ((𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅) ∧ 𝑓X𝑦𝐴 (𝑔𝑦))) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)
117116expr 642 . . . . . . . . . . . 12 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑘𝐴 (𝑔𝑘) ∈ 𝑅)) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
11845, 117syldan 486 . . . . . . . . . . 11 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
1191183adantr3 1242 . . . . . . . . . 10 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
120 eleq2 2719 . . . . . . . . . . 11 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢𝑓X𝑦𝐴 (𝑔𝑦)))
121 ineq1 3840 . . . . . . . . . . . 12 (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑢X𝑘𝐴 𝑆) = (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆))
122121neeq1d 2882 . . . . . . . . . . 11 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑢X𝑘𝐴 𝑆) ≠ ∅ ↔ (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅))
123120, 122imbi12d 333 . . . . . . . . . 10 (𝑢 = X𝑦𝐴 (𝑔𝑦) → ((𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅) ↔ (𝑓X𝑦𝐴 (𝑔𝑦) → (X𝑦𝐴 (𝑔𝑦) ∩ X𝑘𝐴 𝑆) ≠ ∅)))
124119, 123syl5ibrcom 237 . . . . . . . . 9 (((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦))) → (𝑢 = X𝑦𝐴 (𝑔𝑦) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
125124expimpd 628 . . . . . . . 8 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
126125exlimdv 1901 . . . . . . 7 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑢 = X𝑦𝐴 (𝑔𝑦)) → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
12728, 126syl5bi 232 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} → (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
128127ralrimiv 2994 . . . . 5 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅))
1294, 37fmptd 6425 . . . . . . . . . 10 (𝜑 → (𝑘𝐴𝑅):𝐴⟶Top)
130 ffn 6083 . . . . . . . . . 10 ((𝑘𝐴𝑅):𝐴⟶Top → (𝑘𝐴𝑅) Fn 𝐴)
131129, 130syl 17 . . . . . . . . 9 (𝜑 → (𝑘𝐴𝑅) Fn 𝐴)
132 eqid 2651 . . . . . . . . . 10 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
133132ptval 21421 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑘𝐴𝑅) Fn 𝐴) → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1341, 131, 133syl2anc 694 . . . . . . . 8 (𝜑 → (∏t‘(𝑘𝐴𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
13513, 134syl5eq 2697 . . . . . . 7 (𝜑𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
136135adantr 480 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝐽 = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
1372ralrimiva 2995 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋))
13813pttopon 21447 . . . . . . . . 9 ((𝐴𝑉 ∧ ∀𝑘𝐴 𝑅 ∈ (TopOn‘𝑋)) → 𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
1391, 137, 138syl2anc 694 . . . . . . . 8 (𝜑𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋))
140 toponuni 20767 . . . . . . . 8 (𝐽 ∈ (TopOn‘X𝑘𝐴 𝑋) → X𝑘𝐴 𝑋 = 𝐽)
141139, 140syl 17 . . . . . . 7 (𝜑X𝑘𝐴 𝑋 = 𝐽)
142141adantr 480 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑋 = 𝐽)
143132ptbas 21430 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑘𝐴𝑅):𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1441, 129, 143syl2anc 694 . . . . . . 7 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
145144adantr 480 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ∈ TopBases)
1465ralrimiva 2995 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 𝑆𝑋)
147 ss2ixp 7963 . . . . . . . 8 (∀𝑘𝐴 𝑆𝑋X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
148146, 147syl 17 . . . . . . 7 (𝜑X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
149148adantr 480 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → X𝑘𝐴 𝑆X𝑘𝐴 𝑋)
1509clsss3 20911 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 𝑅) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
1514, 8, 150syl2anc 694 . . . . . . . . . 10 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑅)
152151, 7sseqtr4d 3675 . . . . . . . . 9 ((𝜑𝑘𝐴) → ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
153152ralrimiva 2995 . . . . . . . 8 (𝜑 → ∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋)
154 ss2ixp 7963 . . . . . . . 8 (∀𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ 𝑋X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
155153, 154syl 17 . . . . . . 7 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ X𝑘𝐴 𝑋)
156155sselda 3636 . . . . . 6 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓X𝑘𝐴 𝑋)
157136, 142, 145, 149, 156elcls3 20935 . . . . 5 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → (𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆) ↔ ∀𝑢 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝑘𝐴𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝑘𝐴𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} (𝑓𝑢 → (𝑢X𝑘𝐴 𝑆) ≠ ∅)))
158128, 157mpbird 247 . . . 4 ((𝜑𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆)) → 𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆))
159158ex 449 . . 3 (𝜑 → (𝑓X𝑘𝐴 ((cls‘𝑅)‘𝑆) → 𝑓 ∈ ((cls‘𝐽)‘X𝑘𝐴 𝑆)))
160159ssrdv 3642 . 2 (𝜑X𝑘𝐴 ((cls‘𝑅)‘𝑆) ⊆ ((cls‘𝐽)‘X𝑘𝐴 𝑆))
16123, 160eqssd 3653 1 (𝜑 → ((cls‘𝐽)‘X𝑘𝐴 𝑆) = X𝑘𝐴 ((cls‘𝑅)‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1054   = wceq 1523  wex 1744  wcel 2030  {cab 2637  wne 2823  wral 2941  wrex 2942  {crab 2945  csb 3566  cdif 3604  cin 3606  wss 3607  c0 3948   cuni 4468   ciun 4552  cmpt 4762   Fn wfn 5921  wf 5922  cfv 5926  Xcixp 7950  Fincfn 7997  AC wacn 8802  topGenctg 16145  tcpt 16146  Topctop 20746  TopOnctopon 20763  TopBasesctb 20797  Clsdccld 20868  clsccl 20870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-fin 8001  df-fi 8358  df-acn 8806  df-topgen 16151  df-pt 16152  df-top 20747  df-topon 20764  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873
This theorem is referenced by:  ptcls  21467  dfac14  21469
  Copyright terms: Public domain W3C validator