![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ptcldmpt | Structured version Visualization version GIF version |
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
Ref | Expression |
---|---|
ptcldmpt.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ptcldmpt.j | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) |
ptcldmpt.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) |
Ref | Expression |
---|---|
ptcldmpt | ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2793 | . . 3 ⊢ Ⅎ𝑙𝐶 | |
2 | nfcsb1v 3582 | . . 3 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 | |
3 | csbeq1a 3575 | . . 3 ⊢ (𝑘 = 𝑙 → 𝐶 = ⦋𝑙 / 𝑘⦌𝐶) | |
4 | 1, 2, 3 | cbvixp 7967 | . 2 ⊢ X𝑘 ∈ 𝐴 𝐶 = X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 |
5 | ptcldmpt.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | ptcldmpt.j | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐽 ∈ Top) | |
7 | eqid 2651 | . . . 4 ⊢ (𝑘 ∈ 𝐴 ↦ 𝐽) = (𝑘 ∈ 𝐴 ↦ 𝐽) | |
8 | 6, 7 | fmptd 6425 | . . 3 ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐽):𝐴⟶Top) |
9 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑘(𝜑 ∧ 𝑙 ∈ 𝐴) | |
10 | nfcv 2793 | . . . . . . 7 ⊢ Ⅎ𝑘Clsd | |
11 | nffvmpt1 6237 | . . . . . . 7 ⊢ Ⅎ𝑘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙) | |
12 | 10, 11 | nffv 6236 | . . . . . 6 ⊢ Ⅎ𝑘(Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
13 | 2, 12 | nfel 2806 | . . . . 5 ⊢ Ⅎ𝑘⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) |
14 | 9, 13 | nfim 1865 | . . . 4 ⊢ Ⅎ𝑘((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
15 | eleq1 2718 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (𝑘 ∈ 𝐴 ↔ 𝑙 ∈ 𝐴)) | |
16 | 15 | anbi2d 740 | . . . . 5 ⊢ (𝑘 = 𝑙 → ((𝜑 ∧ 𝑘 ∈ 𝐴) ↔ (𝜑 ∧ 𝑙 ∈ 𝐴))) |
17 | fveq2 6229 | . . . . . . 7 ⊢ (𝑘 = 𝑙 → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)) | |
18 | 17 | fveq2d 6233 | . . . . . 6 ⊢ (𝑘 = 𝑙 → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
19 | 3, 18 | eleq12d 2724 | . . . . 5 ⊢ (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) ↔ ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙)))) |
20 | 16, 19 | imbi12d 333 | . . . 4 ⊢ (𝑘 = 𝑙 → (((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) ↔ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))))) |
21 | ptcldmpt.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘𝐽)) | |
22 | simpr 476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) | |
23 | 7 | fvmpt2 6330 | . . . . . . 7 ⊢ ((𝑘 ∈ 𝐴 ∧ 𝐽 ∈ Top) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
24 | 22, 6, 23 | syl2anc 694 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘) = 𝐽) |
25 | 24 | fveq2d 6233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘)) = (Clsd‘𝐽)) |
26 | 21, 25 | eleqtrrd 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑘))) |
27 | 14, 20, 26 | chvar 2298 | . . 3 ⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘((𝑘 ∈ 𝐴 ↦ 𝐽)‘𝑙))) |
28 | 5, 8, 27 | ptcld 21464 | . 2 ⊢ (𝜑 → X𝑙 ∈ 𝐴 ⦋𝑙 / 𝑘⦌𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
29 | 4, 28 | syl5eqel 2734 | 1 ⊢ (𝜑 → X𝑘 ∈ 𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘 ∈ 𝐴 ↦ 𝐽)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ⦋csb 3566 ↦ cmpt 4762 ‘cfv 5926 Xcixp 7950 ∏tcpt 16146 Topctop 20746 Clsdccld 20868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-ixp 7951 df-en 7998 df-fin 8001 df-fi 8358 df-topgen 16151 df-pt 16152 df-top 20747 df-bases 20798 df-cld 20871 |
This theorem is referenced by: ptclsg 21466 kelac1 37950 |
Copyright terms: Public domain | W3C validator |