MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcldmpt Structured version   Visualization version   GIF version

Theorem ptcldmpt 21465
Description: A closed box in the product topology. (Contributed by Stefan O'Rear, 22-Feb-2015.)
Hypotheses
Ref Expression
ptcldmpt.a (𝜑𝐴𝑉)
ptcldmpt.j ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
ptcldmpt.c ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
Assertion
Ref Expression
ptcldmpt (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Distinct variable groups:   𝜑,𝑘   𝐴,𝑘
Allowed substitution hints:   𝐶(𝑘)   𝐽(𝑘)   𝑉(𝑘)

Proof of Theorem ptcldmpt
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2793 . . 3 𝑙𝐶
2 nfcsb1v 3582 . . 3 𝑘𝑙 / 𝑘𝐶
3 csbeq1a 3575 . . 3 (𝑘 = 𝑙𝐶 = 𝑙 / 𝑘𝐶)
41, 2, 3cbvixp 7967 . 2 X𝑘𝐴 𝐶 = X𝑙𝐴 𝑙 / 𝑘𝐶
5 ptcldmpt.a . . 3 (𝜑𝐴𝑉)
6 ptcldmpt.j . . . 4 ((𝜑𝑘𝐴) → 𝐽 ∈ Top)
7 eqid 2651 . . . 4 (𝑘𝐴𝐽) = (𝑘𝐴𝐽)
86, 7fmptd 6425 . . 3 (𝜑 → (𝑘𝐴𝐽):𝐴⟶Top)
9 nfv 1883 . . . . 5 𝑘(𝜑𝑙𝐴)
10 nfcv 2793 . . . . . . 7 𝑘Clsd
11 nffvmpt1 6237 . . . . . . 7 𝑘((𝑘𝐴𝐽)‘𝑙)
1210, 11nffv 6236 . . . . . 6 𝑘(Clsd‘((𝑘𝐴𝐽)‘𝑙))
132, 12nfel 2806 . . . . 5 𝑘𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))
149, 13nfim 1865 . . . 4 𝑘((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
15 eleq1 2718 . . . . . 6 (𝑘 = 𝑙 → (𝑘𝐴𝑙𝐴))
1615anbi2d 740 . . . . 5 (𝑘 = 𝑙 → ((𝜑𝑘𝐴) ↔ (𝜑𝑙𝐴)))
17 fveq2 6229 . . . . . . 7 (𝑘 = 𝑙 → ((𝑘𝐴𝐽)‘𝑘) = ((𝑘𝐴𝐽)‘𝑙))
1817fveq2d 6233 . . . . . 6 (𝑘 = 𝑙 → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
193, 18eleq12d 2724 . . . . 5 (𝑘 = 𝑙 → (𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)) ↔ 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙))))
2016, 19imbi12d 333 . . . 4 (𝑘 = 𝑙 → (((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘))) ↔ ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))))
21 ptcldmpt.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘𝐽))
22 simpr 476 . . . . . . 7 ((𝜑𝑘𝐴) → 𝑘𝐴)
237fvmpt2 6330 . . . . . . 7 ((𝑘𝐴𝐽 ∈ Top) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2422, 6, 23syl2anc 694 . . . . . 6 ((𝜑𝑘𝐴) → ((𝑘𝐴𝐽)‘𝑘) = 𝐽)
2524fveq2d 6233 . . . . 5 ((𝜑𝑘𝐴) → (Clsd‘((𝑘𝐴𝐽)‘𝑘)) = (Clsd‘𝐽))
2621, 25eleqtrrd 2733 . . . 4 ((𝜑𝑘𝐴) → 𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑘)))
2714, 20, 26chvar 2298 . . 3 ((𝜑𝑙𝐴) → 𝑙 / 𝑘𝐶 ∈ (Clsd‘((𝑘𝐴𝐽)‘𝑙)))
285, 8, 27ptcld 21464 . 2 (𝜑X𝑙𝐴 𝑙 / 𝑘𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
294, 28syl5eqel 2734 1 (𝜑X𝑘𝐴 𝐶 ∈ (Clsd‘(∏t‘(𝑘𝐴𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  csb 3566  cmpt 4762  cfv 5926  Xcixp 7950  tcpt 16146  Topctop 20746  Clsdccld 20868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ixp 7951  df-en 7998  df-fin 8001  df-fi 8358  df-topgen 16151  df-pt 16152  df-top 20747  df-bases 20798  df-cld 20871
This theorem is referenced by:  ptclsg  21466  kelac1  37950
  Copyright terms: Public domain W3C validator