![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psshepw | Structured version Visualization version GIF version |
Description: The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
Ref | Expression |
---|---|
psshepw | ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfhe3 38590 | . 2 ⊢ (◡ [⊊] hereditary 𝒫 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴))) | |
2 | sstr2 3752 | . . . . 5 ⊢ (𝑦 ⊆ 𝑥 → (𝑥 ⊆ 𝐴 → 𝑦 ⊆ 𝐴)) | |
3 | pssss 3845 | . . . . 5 ⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) | |
4 | 2, 3 | syl11 33 | . . . 4 ⊢ (𝑥 ⊆ 𝐴 → (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
5 | 4 | alrimiv 2005 | . . 3 ⊢ (𝑥 ⊆ 𝐴 → ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
6 | selpw 4310 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
7 | vex 3344 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
8 | vex 3344 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
9 | 7, 8 | brcnv 5461 | . . . . . 6 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 [⊊] 𝑥) |
10 | 7 | brrpss 7107 | . . . . . 6 ⊢ (𝑦 [⊊] 𝑥 ↔ 𝑦 ⊊ 𝑥) |
11 | 9, 10 | bitri 264 | . . . . 5 ⊢ (𝑥◡ [⊊] 𝑦 ↔ 𝑦 ⊊ 𝑥) |
12 | selpw 4310 | . . . . 5 ⊢ (𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴) | |
13 | 11, 12 | imbi12i 339 | . . . 4 ⊢ ((𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
14 | 13 | albii 1896 | . . 3 ⊢ (∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴) ↔ ∀𝑦(𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝐴)) |
15 | 5, 6, 14 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ 𝒫 𝐴 → ∀𝑦(𝑥◡ [⊊] 𝑦 → 𝑦 ∈ 𝒫 𝐴)) |
16 | 1, 15 | mpgbir 1875 | 1 ⊢ ◡ [⊊] hereditary 𝒫 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1630 ∈ wcel 2140 ⊆ wss 3716 ⊊ wpss 3717 𝒫 cpw 4303 class class class wbr 4805 ◡ccnv 5266 [⊊] crpss 7103 hereditary whe 38587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-sep 4934 ax-nul 4942 ax-pr 5056 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-rab 3060 df-v 3343 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-op 4329 df-br 4806 df-opab 4866 df-xp 5273 df-rel 5274 df-cnv 5275 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-rpss 7104 df-he 38588 |
This theorem is referenced by: sshepw 38604 |
Copyright terms: Public domain | W3C validator |