![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq2d | Structured version Visualization version GIF version |
Description: An equality deduction for the proper subclass relationship. (Contributed by NM, 9-Jun-2004.) |
Ref | Expression |
---|---|
psseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
psseq2d | ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psseq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | psseq2 3837 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐶 ⊊ 𝐴 ↔ 𝐶 ⊊ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ⊊ wpss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-ne 2933 df-in 3722 df-ss 3729 df-pss 3731 |
This theorem is referenced by: psseq12d 3843 php3 8313 inf3lem5 8704 infeq5i 8708 ackbij1lem15 9268 fin4en1 9343 chpsscon1 28693 chnle 28703 atcvatlem 29574 atcvati 29575 lsatcvat 34858 |
Copyright terms: Public domain | W3C validator |