![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psseq1 | Structured version Visualization version GIF version |
Description: Equality theorem for proper subclass. (Contributed by NM, 7-Feb-1996.) |
Ref | Expression |
---|---|
psseq1 | ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 3767 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | neeq1 2994 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 ↔ 𝐵 ≠ 𝐶)) | |
3 | 1, 2 | anbi12d 749 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶) ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶))) |
4 | df-pss 3731 | . 2 ⊢ (𝐴 ⊊ 𝐶 ↔ (𝐴 ⊆ 𝐶 ∧ 𝐴 ≠ 𝐶)) | |
5 | df-pss 3731 | . 2 ⊢ (𝐵 ⊊ 𝐶 ↔ (𝐵 ⊆ 𝐶 ∧ 𝐵 ≠ 𝐶)) | |
6 | 3, 4, 5 | 3bitr4g 303 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ⊊ 𝐶 ↔ 𝐵 ⊊ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ≠ wne 2932 ⊆ wss 3715 ⊊ wpss 3716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-ne 2933 df-in 3722 df-ss 3729 df-pss 3731 |
This theorem is referenced by: psseq1i 3838 psseq1d 3841 psstr 3853 sspsstr 3854 brrpssg 7104 sorpssuni 7111 pssnn 8343 marypha1lem 8504 infeq5i 8706 infpss 9231 fin4i 9312 isfin2-2 9333 zornn0g 9519 ttukeylem7 9529 elnp 10001 elnpi 10002 ltprord 10044 pgpfac1lem1 18673 pgpfac1lem5 18678 pgpfac1 18679 pgpfaclem2 18681 pgpfac 18683 islbs3 19357 alexsubALTlem4 22055 wilthlem2 24994 spansncv 28821 cvbr 29450 cvcon3 29452 cvnbtwn 29454 dfon2lem3 31995 dfon2lem4 31996 dfon2lem5 31997 dfon2lem6 31998 dfon2lem7 31999 dfon2lem8 32000 dfon2 32002 lcvbr 34811 lcvnbtwn 34815 mapdcv 37451 |
Copyright terms: Public domain | W3C validator |