![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pssdifn0 | Structured version Visualization version GIF version |
Description: A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.) |
Ref | Expression |
---|---|
pssdifn0 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssdif0 4050 | . . . 4 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
2 | eqss 3724 | . . . . 5 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
3 | 2 | simplbi2 656 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ⊆ 𝐴 → 𝐴 = 𝐵)) |
4 | 1, 3 | syl5bir 233 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → 𝐴 = 𝐵)) |
5 | 4 | necon3d 2917 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ≠ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅)) |
6 | 5 | imp 444 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ≠ 𝐵) → (𝐵 ∖ 𝐴) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ≠ wne 2896 ∖ cdif 3677 ⊆ wss 3680 ∅c0 4023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-v 3306 df-dif 3683 df-in 3687 df-ss 3694 df-nul 4024 |
This theorem is referenced by: pssdif 4053 tz7.7 5862 domdifsn 8159 inf3lem3 8640 isf32lem6 9293 fclscf 21951 flimfnfcls 21954 lebnumlem1 22882 lebnumlem2 22883 lebnumlem3 22884 ig1peu 24051 ig1pdvds 24056 divrngidl 34059 |
Copyright terms: Public domain | W3C validator |