Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscaval Structured version   Visualization version   GIF version

Theorem psrvscaval 19607
 Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrvsca.x (𝜑𝑋𝐾)
psrvsca.y (𝜑𝐹𝐵)
psrvscaval.y (𝜑𝑌𝐷)
Assertion
Ref Expression
psrvscaval (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐵()   𝐷()   𝑅()   𝑆()   ()   · ()   𝐹()   𝐾()   𝑋()   𝑌()

Proof of Theorem psrvscaval
StepHypRef Expression
1 psrvsca.s . . . 4 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.n . . . 4 = ( ·𝑠𝑆)
3 psrvsca.k . . . 4 𝐾 = (Base‘𝑅)
4 psrvsca.b . . . 4 𝐵 = (Base‘𝑆)
5 psrvsca.m . . . 4 · = (.r𝑅)
6 psrvsca.d . . . 4 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.x . . . 4 (𝜑𝑋𝐾)
8 psrvsca.y . . . 4 (𝜑𝐹𝐵)
91, 2, 3, 4, 5, 6, 7, 8psrvsca 19606 . . 3 (𝜑 → (𝑋 𝐹) = ((𝐷 × {𝑋}) ∘𝑓 · 𝐹))
109fveq1d 6335 . 2 (𝜑 → ((𝑋 𝐹)‘𝑌) = (((𝐷 × {𝑋}) ∘𝑓 · 𝐹)‘𝑌))
11 psrvscaval.y . . 3 (𝜑𝑌𝐷)
12 ovex 6827 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
136, 12rabex2 4949 . . . . 5 𝐷 ∈ V
1413a1i 11 . . . 4 (𝜑𝐷 ∈ V)
151, 3, 6, 4, 8psrelbas 19594 . . . . 5 (𝜑𝐹:𝐷𝐾)
1615ffnd 6185 . . . 4 (𝜑𝐹 Fn 𝐷)
17 eqidd 2772 . . . 4 ((𝜑𝑌𝐷) → (𝐹𝑌) = (𝐹𝑌))
1814, 7, 16, 17ofc1 7071 . . 3 ((𝜑𝑌𝐷) → (((𝐷 × {𝑋}) ∘𝑓 · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
1911, 18mpdan 667 . 2 (𝜑 → (((𝐷 × {𝑋}) ∘𝑓 · 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
2010, 19eqtrd 2805 1 (𝜑 → ((𝑋 𝐹)‘𝑌) = (𝑋 · (𝐹𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351  {csn 4317   × cxp 5248  ◡ccnv 5249   “ cima 5253  ‘cfv 6030  (class class class)co 6796   ∘𝑓 cof 7046   ↑𝑚 cmap 8013  Fincfn 8113  ℕcn 11226  ℕ0cn0 11499  Basecbs 16064  .rcmulr 16150   ·𝑠 cvsca 16153   mPwSer cmps 19566 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-psr 19571 This theorem is referenced by:  psrass23l  19623  psrass23  19625  mpllsslem  19650
 Copyright terms: Public domain W3C validator