MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrvscafval Structured version   Visualization version   GIF version

Theorem psrvscafval 19438
Description: The scalar multiplication operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
psrvsca.s 𝑆 = (𝐼 mPwSer 𝑅)
psrvsca.n = ( ·𝑠𝑆)
psrvsca.k 𝐾 = (Base‘𝑅)
psrvsca.b 𝐵 = (Base‘𝑆)
psrvsca.m · = (.r𝑅)
psrvsca.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrvscafval = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
Distinct variable groups:   𝑥,𝑓,𝐵   𝑓,,𝐼,𝑥   𝑓,𝐾,𝑥   𝐷,𝑓,𝑥   𝑅,𝑓,𝑥   · ,𝑓,𝑥   ,𝑓,𝑥
Allowed substitution hints:   𝐵()   𝐷()   𝑅()   𝑆(𝑥,𝑓,)   ()   · ()   𝐾()

Proof of Theorem psrvscafval
Dummy variables 𝑔 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrvsca.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrvsca.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2651 . . . . 5 (+g𝑅) = (+g𝑅)
4 psrvsca.m . . . . 5 · = (.r𝑅)
5 eqid 2651 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrvsca.d . . . . 5 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
7 psrvsca.b . . . . . 6 𝐵 = (Base‘𝑆)
8 simpl 472 . . . . . 6 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐼 ∈ V)
91, 2, 6, 7, 8psrbas 19426 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
10 eqid 2651 . . . . . 6 (+g𝑆) = (+g𝑆)
111, 7, 3, 10psrplusg 19429 . . . . 5 (+g𝑆) = ( ∘𝑓 (+g𝑅) ↾ (𝐵 × 𝐵))
12 eqid 2651 . . . . . 6 (.r𝑆) = (.r𝑆)
131, 7, 4, 12, 6psrmulr 19432 . . . . 5 (.r𝑆) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
14 eqid 2651 . . . . 5 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
15 eqidd 2652 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
16 simpr 476 . . . . 5 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑅 ∈ V)
171, 2, 3, 4, 5, 6, 9, 11, 13, 14, 15, 8, 16psrval 19410 . . . 4 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1817fveq2d 6233 . . 3 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
19 psrvsca.n . . 3 = ( ·𝑠𝑆)
20 fvex 6239 . . . . . 6 (Base‘𝑅) ∈ V
212, 20eqeltri 2726 . . . . 5 𝐾 ∈ V
22 fvex 6239 . . . . . 6 (Base‘𝑆) ∈ V
237, 22eqeltri 2726 . . . . 5 𝐵 ∈ V
2421, 23mpt2ex 7292 . . . 4 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) ∈ V
25 psrvalstr 19411 . . . . 5 ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
26 vscaid 16063 . . . . 5 ·𝑠 = Slot ( ·𝑠 ‘ndx)
27 snsstp2 4380 . . . . . 6 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩} ⊆ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}
28 ssun2 3810 . . . . . 6 {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2927, 28sstri 3645 . . . . 5 {⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩} ⊆ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
3025, 26, 29strfv 15954 . . . 4 ((𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) ∈ V → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
3124, 30ax-mp 5 . . 3 (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = ( ·𝑠 ‘({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), (+g𝑆)⟩, ⟨(.r‘ndx), (.r𝑆)⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
3218, 19, 313eqtr4g 2710 . 2 ((𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)))
33 eqid 2651 . . . . . 6 ∅ = ∅
34 fn0 6049 . . . . . 6 (∅ Fn ∅ ↔ ∅ = ∅)
3533, 34mpbir 221 . . . . 5 ∅ Fn ∅
36 reldmpsr 19409 . . . . . . . . . 10 Rel dom mPwSer
3736ovprc 6723 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
381, 37syl5eq 2697 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝑆 = ∅)
3938fveq2d 6233 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( ·𝑠𝑆) = ( ·𝑠 ‘∅))
40 df-vsca 16005 . . . . . . . 8 ·𝑠 = Slot 6
4140str0 15958 . . . . . . 7 ∅ = ( ·𝑠 ‘∅)
4239, 19, 413eqtr4g 2710 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = ∅)
4336, 1, 7elbasov 15968 . . . . . . . . . 10 (𝑓𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V))
4443con3i 150 . . . . . . . . 9 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ¬ 𝑓𝐵)
4544eq0rdv 4012 . . . . . . . 8 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → 𝐵 = ∅)
4645xpeq2d 5173 . . . . . . 7 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = (𝐾 × ∅))
47 xp0 5587 . . . . . . 7 (𝐾 × ∅) = ∅
4846, 47syl6eq 2701 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝐾 × 𝐵) = ∅)
4942, 48fneq12d 6021 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → ( Fn (𝐾 × 𝐵) ↔ ∅ Fn ∅))
5035, 49mpbiri 248 . . . 4 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → Fn (𝐾 × 𝐵))
51 fnov 6810 . . . 4 ( Fn (𝐾 × 𝐵) ↔ = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5250, 51sylib 208 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5344pm2.21d 118 . . . . . 6 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓)))
5453a1d 25 . . . . 5 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾 → (𝑓𝐵 → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓))))
55543imp 1275 . . . 4 ((¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) ∧ 𝑥𝐾𝑓𝐵) → ((𝐷 × {𝑥}) ∘𝑓 · 𝑓) = (𝑥 𝑓))
5655mpt2eq3dva 6761 . . 3 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ (𝑥 𝑓)))
5752, 56eqtr4d 2688 . 2 (¬ (𝐼 ∈ V ∧ 𝑅 ∈ V) → = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)))
5832, 57pm2.61i 176 1 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1523  wcel 2030  {crab 2945  Vcvv 3231  cun 3605  c0 3948  {csn 4210  {ctp 4214  cop 4216   × cxp 5141  ccnv 5142  cima 5146   Fn wfn 5921  cfv 5926  (class class class)co 6690  cmpt2 6692  𝑓 cof 6937  𝑚 cmap 7899  Fincfn 7997  1c1 9975  cn 11058  6c6 11112  9c9 11115  0cn0 11330  ndxcnx 15901  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  TopSetcts 15994  TopOpenctopn 16129  tcpt 16146   mPwSer cmps 19399
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-psr 19404
This theorem is referenced by:  psrvsca  19439
  Copyright terms: Public domain W3C validator