![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrvscacl | Structured version Visualization version GIF version |
Description: Closure of the power series scalar multiplication operation. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrvscacl.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrvscacl.n | ⊢ · = ( ·𝑠 ‘𝑆) |
psrvscacl.k | ⊢ 𝐾 = (Base‘𝑅) |
psrvscacl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrvscacl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psrvscacl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐾) |
psrvscacl.y | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
Ref | Expression |
---|---|
psrvscacl | ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrvscacl.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | psrvscacl.k | . . . . . . 7 ⊢ 𝐾 = (Base‘𝑅) | |
3 | eqid 2770 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | 2, 3 | ringcl 18768 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
5 | 4 | 3expb 1112 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
6 | 1, 5 | sylan 561 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(.r‘𝑅)𝑦) ∈ 𝐾) |
7 | psrvscacl.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐾) | |
8 | fconst6g 6234 | . . . . 5 ⊢ (𝑋 ∈ 𝐾 → ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
10 | psrvscacl.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
11 | eqid 2770 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
12 | psrvscacl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
13 | psrvscacl.y | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
14 | 10, 2, 11, 12, 13 | psrelbas 19593 | . . . 4 ⊢ (𝜑 → 𝐹:{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
15 | ovex 6822 | . . . . . 6 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
16 | 15 | rabex 4943 | . . . . 5 ⊢ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V |
17 | 16 | a1i 11 | . . . 4 ⊢ (𝜑 → {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∈ V) |
18 | inidm 3969 | . . . 4 ⊢ ({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} ∩ {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
19 | 6, 9, 14, 17, 17, 18 | off 7058 | . . 3 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
20 | fvex 6342 | . . . . 5 ⊢ (Base‘𝑅) ∈ V | |
21 | 2, 20 | eqeltri 2845 | . . . 4 ⊢ 𝐾 ∈ V |
22 | 21, 16 | elmap 8037 | . . 3 ⊢ ((({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r‘𝑅)𝐹) ∈ (𝐾 ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}) ↔ (({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r‘𝑅)𝐹):{𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin}⟶𝐾) |
23 | 19, 22 | sylibr 224 | . 2 ⊢ (𝜑 → (({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r‘𝑅)𝐹) ∈ (𝐾 ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
24 | psrvscacl.n | . . 3 ⊢ · = ( ·𝑠 ‘𝑆) | |
25 | 10, 24, 2, 12, 3, 11, 7, 13 | psrvsca 19605 | . 2 ⊢ (𝜑 → (𝑋 · 𝐹) = (({𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} × {𝑋}) ∘𝑓 (.r‘𝑅)𝐹)) |
26 | reldmpsr 19575 | . . . . . 6 ⊢ Rel dom mPwSer | |
27 | 26, 10, 12 | elbasov 16127 | . . . . 5 ⊢ (𝐹 ∈ 𝐵 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
28 | 13, 27 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 ∈ V ∧ 𝑅 ∈ V)) |
29 | 28 | simpld 476 | . . 3 ⊢ (𝜑 → 𝐼 ∈ V) |
30 | 10, 2, 11, 12, 29 | psrbas 19592 | . 2 ⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin})) |
31 | 23, 25, 30 | 3eltr4d 2864 | 1 ⊢ (𝜑 → (𝑋 · 𝐹) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1630 ∈ wcel 2144 {crab 3064 Vcvv 3349 {csn 4314 × cxp 5247 ◡ccnv 5248 “ cima 5252 ⟶wf 6027 ‘cfv 6031 (class class class)co 6792 ∘𝑓 cof 7041 ↑𝑚 cmap 8008 Fincfn 8108 ℕcn 11221 ℕ0cn0 11493 Basecbs 16063 .rcmulr 16149 ·𝑠 cvsca 16152 Ringcrg 18754 mPwSer cmps 19565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-plusg 16161 df-mulr 16162 df-sca 16164 df-vsca 16165 df-tset 16167 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mgp 18697 df-ring 18756 df-psr 19570 |
This theorem is referenced by: psrlmod 19615 psrass23l 19622 psrass23 19624 mpllsslem 19649 |
Copyright terms: Public domain | W3C validator |