![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrlinv | Structured version Visualization version GIF version |
Description: The negative function in the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrgrp.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrgrp.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrgrp.r | ⊢ (𝜑 → 𝑅 ∈ Grp) |
psrnegcl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psrnegcl.i | ⊢ 𝑁 = (invg‘𝑅) |
psrnegcl.b | ⊢ 𝐵 = (Base‘𝑆) |
psrnegcl.z | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
psrlinv.o | ⊢ 0 = (0g‘𝑅) |
psrlinv.p | ⊢ + = (+g‘𝑆) |
Ref | Expression |
---|---|
psrlinv | ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrnegcl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
2 | ovex 6823 | . . . . 5 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
3 | 1, 2 | rabex2 4948 | . . . 4 ⊢ 𝐷 ∈ V |
4 | 3 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐷 ∈ V) |
5 | fvexd 6344 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑁‘(𝑋‘𝑥)) ∈ V) | |
6 | psrgrp.s | . . . . 5 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
7 | eqid 2771 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
8 | psrnegcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑆) | |
9 | psrnegcl.z | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
10 | 6, 7, 1, 8, 9 | psrelbas 19594 | . . . 4 ⊢ (𝜑 → 𝑋:𝐷⟶(Base‘𝑅)) |
11 | 10 | ffvelrnda 6502 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑋‘𝑥) ∈ (Base‘𝑅)) |
12 | 10 | feqmptd 6391 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐷 ↦ (𝑋‘𝑥))) |
13 | psrnegcl.i | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑅) | |
14 | psrgrp.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ Grp) | |
15 | 7, 13, 14 | grpinvf1o 17693 | . . . . . 6 ⊢ (𝜑 → 𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅)) |
16 | f1of 6278 | . . . . . 6 ⊢ (𝑁:(Base‘𝑅)–1-1-onto→(Base‘𝑅) → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁:(Base‘𝑅)⟶(Base‘𝑅)) |
18 | 17 | feqmptd 6391 | . . . 4 ⊢ (𝜑 → 𝑁 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑁‘𝑦))) |
19 | fveq2 6332 | . . . 4 ⊢ (𝑦 = (𝑋‘𝑥) → (𝑁‘𝑦) = (𝑁‘(𝑋‘𝑥))) | |
20 | 11, 12, 18, 19 | fmptco 6539 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) = (𝑥 ∈ 𝐷 ↦ (𝑁‘(𝑋‘𝑥)))) |
21 | 4, 5, 11, 20, 12 | offval2 7061 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
22 | eqid 2771 | . . 3 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
23 | psrlinv.p | . . 3 ⊢ + = (+g‘𝑆) | |
24 | psrgrp.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
25 | 6, 24, 14, 1, 13, 8, 9 | psrnegcl 19611 | . . 3 ⊢ (𝜑 → (𝑁 ∘ 𝑋) ∈ 𝐵) |
26 | 6, 8, 22, 23, 25, 9 | psradd 19597 | . 2 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = ((𝑁 ∘ 𝑋) ∘𝑓 (+g‘𝑅)𝑋)) |
27 | psrlinv.o | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
28 | 7, 22, 27, 13 | grplinv 17676 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ (𝑋‘𝑥) ∈ (Base‘𝑅)) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
29 | 14, 11, 28 | syl2an2r 664 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)) = 0 ) |
30 | 29 | mpteq2dva 4878 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥))) = (𝑥 ∈ 𝐷 ↦ 0 )) |
31 | fconstmpt 5303 | . . 3 ⊢ (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ 0 ) | |
32 | 30, 31 | syl6reqr 2824 | . 2 ⊢ (𝜑 → (𝐷 × { 0 }) = (𝑥 ∈ 𝐷 ↦ ((𝑁‘(𝑋‘𝑥))(+g‘𝑅)(𝑋‘𝑥)))) |
33 | 21, 26, 32 | 3eqtr4d 2815 | 1 ⊢ (𝜑 → ((𝑁 ∘ 𝑋) + 𝑋) = (𝐷 × { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 {crab 3065 Vcvv 3351 {csn 4316 ↦ cmpt 4863 × cxp 5247 ◡ccnv 5248 “ cima 5252 ∘ ccom 5253 ⟶wf 6027 –1-1-onto→wf1o 6030 ‘cfv 6031 (class class class)co 6793 ∘𝑓 cof 7042 ↑𝑚 cmap 8009 Fincfn 8109 ℕcn 11222 ℕ0cn0 11494 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 invgcminusg 17631 mPwSer cmps 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-minusg 17634 df-psr 19571 |
This theorem is referenced by: psrgrp 19613 psrneg 19615 |
Copyright terms: Public domain | W3C validator |