MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbas Structured version   Visualization version   GIF version

Theorem psrbas 19593
Description: The base set of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014.) (Revised by Mario Carneiro, 2-Oct-2015.) (Proof shortened by AV, 8-Jul-2019.)
Hypotheses
Ref Expression
psrbas.s 𝑆 = (𝐼 mPwSer 𝑅)
psrbas.k 𝐾 = (Base‘𝑅)
psrbas.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrbas.b 𝐵 = (Base‘𝑆)
psrbas.i (𝜑𝐼𝑉)
Assertion
Ref Expression
psrbas (𝜑𝐵 = (𝐾𝑚 𝐷))
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrbas
Dummy variables 𝑔 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrbas.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 psrbas.k . . . . 5 𝐾 = (Base‘𝑅)
3 eqid 2771 . . . . 5 (+g𝑅) = (+g𝑅)
4 eqid 2771 . . . . 5 (.r𝑅) = (.r𝑅)
5 eqid 2771 . . . . 5 (TopOpen‘𝑅) = (TopOpen‘𝑅)
6 psrbas.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 eqidd 2772 . . . . 5 ((𝜑𝑅 ∈ V) → (𝐾𝑚 𝐷) = (𝐾𝑚 𝐷))
8 eqid 2771 . . . . 5 ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷))) = ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))
9 eqid 2771 . . . . 5 (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥))))))) = (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))
10 eqid 2771 . . . . 5 (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔)) = (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))
11 eqidd 2772 . . . . 5 ((𝜑𝑅 ∈ V) → (∏t‘(𝐷 × {(TopOpen‘𝑅)})) = (∏t‘(𝐷 × {(TopOpen‘𝑅)})))
12 psrbas.i . . . . . 6 (𝜑𝐼𝑉)
1312adantr 466 . . . . 5 ((𝜑𝑅 ∈ V) → 𝐼𝑉)
14 simpr 471 . . . . 5 ((𝜑𝑅 ∈ V) → 𝑅 ∈ V)
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14psrval 19577 . . . 4 ((𝜑𝑅 ∈ V) → 𝑆 = ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
1615fveq2d 6337 . . 3 ((𝜑𝑅 ∈ V) → (Base‘𝑆) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
17 psrbas.b . . 3 𝐵 = (Base‘𝑆)
18 ovex 6827 . . . 4 (𝐾𝑚 𝐷) ∈ V
19 psrvalstr 19578 . . . . 5 ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}) Struct ⟨1, 9⟩
20 baseid 16126 . . . . 5 Base = Slot (Base‘ndx)
21 snsstp1 4483 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩}
22 ssun1 3927 . . . . . 6 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2321, 22sstri 3761 . . . . 5 {⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩} ⊆ ({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})
2419, 20, 23strfv 16114 . . . 4 ((𝐾𝑚 𝐷) ∈ V → (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩})))
2518, 24ax-mp 5 . . 3 (𝐾𝑚 𝐷) = (Base‘({⟨(Base‘ndx), (𝐾𝑚 𝐷)⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑅) ↾ ((𝐾𝑚 𝐷) × (𝐾𝑚 𝐷)))⟩, ⟨(.r‘ndx), (𝑔 ∈ (𝐾𝑚 𝐷), ∈ (𝐾𝑚 𝐷) ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑔𝑥)(.r𝑅)(‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), (𝑥𝐾, 𝑔 ∈ (𝐾𝑚 𝐷) ↦ ((𝐷 × {𝑥}) ∘𝑓 (.r𝑅)𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝐷 × {(TopOpen‘𝑅)}))⟩}))
2616, 17, 253eqtr4g 2830 . 2 ((𝜑𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
27 reldmpsr 19576 . . . . . . . 8 Rel dom mPwSer
2827ovprc2 6834 . . . . . . 7 𝑅 ∈ V → (𝐼 mPwSer 𝑅) = ∅)
2928adantl 467 . . . . . 6 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐼 mPwSer 𝑅) = ∅)
301, 29syl5eq 2817 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝑆 = ∅)
3130fveq2d 6337 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑆) = (Base‘∅))
32 base0 16119 . . . 4 ∅ = (Base‘∅)
3331, 17, 323eqtr4g 2830 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = ∅)
34 fvprc 6327 . . . . . 6 𝑅 ∈ V → (Base‘𝑅) = ∅)
3534adantl 467 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (Base‘𝑅) = ∅)
362, 35syl5eq 2817 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐾 = ∅)
376fczpsrbag 19582 . . . . . . 7 (𝐼𝑉 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3812, 37syl 17 . . . . . 6 (𝜑 → (𝑥𝐼 ↦ 0) ∈ 𝐷)
3938adantr 466 . . . . 5 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝑥𝐼 ↦ 0) ∈ 𝐷)
4039ne0d 4070 . . . 4 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐷 ≠ ∅)
412fvexi 6345 . . . . 5 𝐾 ∈ V
42 ovex 6827 . . . . . 6 (ℕ0𝑚 𝐼) ∈ V
436, 42rabex2 4949 . . . . 5 𝐷 ∈ V
4441, 43map0 8056 . . . 4 ((𝐾𝑚 𝐷) = ∅ ↔ (𝐾 = ∅ ∧ 𝐷 ≠ ∅))
4536, 40, 44sylanbrc 572 . . 3 ((𝜑 ∧ ¬ 𝑅 ∈ V) → (𝐾𝑚 𝐷) = ∅)
4633, 45eqtr4d 2808 . 2 ((𝜑 ∧ ¬ 𝑅 ∈ V) → 𝐵 = (𝐾𝑚 𝐷))
4726, 46pm2.61dan 814 1 (𝜑𝐵 = (𝐾𝑚 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wcel 2145  wne 2943  {crab 3065  Vcvv 3351  cun 3721  c0 4063  {csn 4317  {ctp 4321  cop 4323   class class class wbr 4787  cmpt 4864   × cxp 5248  ccnv 5249  cres 5252  cima 5253  cfv 6030  (class class class)co 6796  cmpt2 6798  𝑓 cof 7046  𝑟 cofr 7047  𝑚 cmap 8013  Fincfn 8113  0cc0 10142  1c1 10143  cle 10281  cmin 10472  cn 11226  9c9 11283  0cn0 11499  ndxcnx 16061  Basecbs 16064  +gcplusg 16149  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  TopSetcts 16155  TopOpenctopn 16290  tcpt 16307   Σg cgsu 16309   mPwSer cmps 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-psr 19571
This theorem is referenced by:  psrelbas  19594  psrplusg  19596  psraddcl  19598  psrmulr  19599  psrmulcllem  19602  psrsca  19604  psrvscafval  19605  psrvscacl  19608  psr0cl  19609  psrnegcl  19611  psr1cl  19617  resspsrbas  19630  resspsradd  19631  resspsrmul  19632  subrgpsr  19634  mvrf  19639  mplmon  19678  mplcoe1  19680  opsrtoslem2  19700  psr1bas  19776  psrbaspropd  19820  ply1plusgfvi  19827
  Copyright terms: Public domain W3C validator