MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagsn Structured version   Visualization version   GIF version

Theorem psrbagsn 19710
Description: A singleton bag is a bag. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypothesis
Ref Expression
psrbag0.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagsn (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Distinct variable groups:   𝑓,𝐼,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝐷(𝑥,𝑓)   𝑉(𝑥,𝑓)

Proof of Theorem psrbagsn
StepHypRef Expression
1 1nn0 11510 . . . . . . 7 1 ∈ ℕ0
2 0nn0 11509 . . . . . . 7 0 ∈ ℕ0
31, 2keepel 4294 . . . . . 6 if(𝑥 = 𝐾, 1, 0) ∈ ℕ0
43a1i 11 . . . . 5 ((⊤ ∧ 𝑥𝐼) → if(𝑥 = 𝐾, 1, 0) ∈ ℕ0)
5 eqid 2771 . . . . 5 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) = (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0))
64, 5fmptd 6527 . . . 4 (⊤ → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0)
76trud 1641 . . 3 (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0
85mptpreima 5772 . . . 4 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) = {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ}
9 snfi 8194 . . . . . 6 {𝐾} ∈ Fin
10 inss1 3981 . . . . . . 7 ({𝑥𝑥 = 𝐾} ∩ 𝐼) ⊆ {𝑥𝑥 = 𝐾}
11 dfrab2 4051 . . . . . . 7 {𝑥𝐼𝑥 = 𝐾} = ({𝑥𝑥 = 𝐾} ∩ 𝐼)
12 df-sn 4317 . . . . . . 7 {𝐾} = {𝑥𝑥 = 𝐾}
1310, 11, 123sstr4i 3793 . . . . . 6 {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}
14 ssfi 8336 . . . . . 6 (({𝐾} ∈ Fin ∧ {𝑥𝐼𝑥 = 𝐾} ⊆ {𝐾}) → {𝑥𝐼𝑥 = 𝐾} ∈ Fin)
159, 13, 14mp2an 672 . . . . 5 {𝑥𝐼𝑥 = 𝐾} ∈ Fin
16 0nnn 11254 . . . . . . . . 9 ¬ 0 ∈ ℕ
17 iffalse 4234 . . . . . . . . . 10 𝑥 = 𝐾 → if(𝑥 = 𝐾, 1, 0) = 0)
1817eleq1d 2835 . . . . . . . . 9 𝑥 = 𝐾 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ ↔ 0 ∈ ℕ))
1916, 18mtbiri 316 . . . . . . . 8 𝑥 = 𝐾 → ¬ if(𝑥 = 𝐾, 1, 0) ∈ ℕ)
2019con4i 114 . . . . . . 7 (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾)
2120a1i 11 . . . . . 6 (𝑥𝐼 → (if(𝑥 = 𝐾, 1, 0) ∈ ℕ → 𝑥 = 𝐾))
2221ss2rabi 3833 . . . . 5 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}
23 ssfi 8336 . . . . 5 (({𝑥𝐼𝑥 = 𝐾} ∈ Fin ∧ {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ⊆ {𝑥𝐼𝑥 = 𝐾}) → {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin)
2415, 22, 23mp2an 672 . . . 4 {𝑥𝐼 ∣ if(𝑥 = 𝐾, 1, 0) ∈ ℕ} ∈ Fin
258, 24eqeltri 2846 . . 3 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin
267, 25pm3.2i 447 . 2 ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)
27 psrbag0.d . . 3 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
2827psrbag 19579 . 2 (𝐼𝑉 → ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷 ↔ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)):𝐼⟶ℕ0 ∧ ((𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) “ ℕ) ∈ Fin)))
2926, 28mpbiri 248 1 (𝐼𝑉 → (𝑥𝐼 ↦ if(𝑥 = 𝐾, 1, 0)) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1631  wtru 1632  wcel 2145  {cab 2757  {crab 3065  cin 3722  wss 3723  ifcif 4225  {csn 4316  cmpt 4863  ccnv 5248  cima 5252  wf 6027  (class class class)co 6793  𝑚 cmap 8009  Fincfn 8109  0cc0 10138  1c1 10139  cn 11222  0cn0 11494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-map 8011  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495
This theorem is referenced by:  evlslem1  19730
  Copyright terms: Public domain W3C validator