MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbaglefi Structured version   Visualization version   GIF version

Theorem psrbaglefi 19607
Description: There are finitely many bags dominated by a given bag. (Contributed by Mario Carneiro, 29-Dec-2014.) (Revised by Mario Carneiro, 25-Jan-2015.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbaglefi ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
Distinct variable groups:   𝑦,𝑓,𝐹   𝑦,𝑉   𝑓,𝐼,𝑦   𝑦,𝐷
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbaglefi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-rab 3073 . . 3 {𝑦𝐷𝑦𝑟𝐹} = {𝑦 ∣ (𝑦𝐷𝑦𝑟𝐹)}
2 psrbag.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 19599 . . . . . . . 8 (𝐼𝑉 → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
43adantr 467 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷 ↔ (𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin)))
5 simpl 469 . . . . . . 7 ((𝑦:𝐼⟶ℕ0 ∧ (𝑦 “ ℕ) ∈ Fin) → 𝑦:𝐼⟶ℕ0)
64, 5syl6bi 244 . . . . . 6 ((𝐼𝑉𝐹𝐷) → (𝑦𝐷𝑦:𝐼⟶ℕ0))
76adantrd 480 . . . . 5 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦𝑟𝐹) → 𝑦:𝐼⟶ℕ0))
8 ss2ixp 8096 . . . . . . . . 9 (∀𝑥𝐼 (0...(𝐹𝑥)) ⊆ ℕ0X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0)
9 fz0ssnn0 12664 . . . . . . . . . 10 (0...(𝐹𝑥)) ⊆ ℕ0
109a1i 11 . . . . . . . . 9 (𝑥𝐼 → (0...(𝐹𝑥)) ⊆ ℕ0)
118, 10mprg 3078 . . . . . . . 8 X𝑥𝐼 (0...(𝐹𝑥)) ⊆ X𝑥𝐼0
1211sseli 3754 . . . . . . 7 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦X𝑥𝐼0)
13 vex 3358 . . . . . . . 8 𝑦 ∈ V
1413elixpconst 8091 . . . . . . 7 (𝑦X𝑥𝐼0𝑦:𝐼⟶ℕ0)
1512, 14sylib 209 . . . . . 6 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0)
1615a1i 11 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) → 𝑦:𝐼⟶ℕ0))
17 ffn 6196 . . . . . . . . 9 (𝑦:𝐼⟶ℕ0𝑦 Fn 𝐼)
1817adantl 468 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝑦 Fn 𝐼)
1913elixp 8090 . . . . . . . . 9 (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ (𝑦 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2019baib 526 . . . . . . . 8 (𝑦 Fn 𝐼 → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
2118, 20syl 17 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦X𝑥𝐼 (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥))))
22 ffvelrn 6517 . . . . . . . . . . . 12 ((𝑦:𝐼⟶ℕ0𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
2322adantll 694 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ ℕ0)
24 nn0uz 11946 . . . . . . . . . . 11 0 = (ℤ‘0)
2523, 24syl6eleq 2863 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) ∈ (ℤ‘0))
262psrbagf 19600 . . . . . . . . . . . . 13 ((𝐼𝑉𝐹𝐷) → 𝐹:𝐼⟶ℕ0)
2726adantr 467 . . . . . . . . . . . 12 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹:𝐼⟶ℕ0)
2827ffvelrnda 6519 . . . . . . . . . . 11 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
2928nn0zd 11704 . . . . . . . . . 10 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℤ)
30 elfz5 12563 . . . . . . . . . 10 (((𝑦𝑥) ∈ (ℤ‘0) ∧ (𝐹𝑥) ∈ ℤ) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3125, 29, 30syl2anc 574 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → ((𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ (𝑦𝑥) ≤ (𝐹𝑥)))
3231ralbidva 3137 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3327ffnd 6197 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐹 Fn 𝐼)
34 simpll 772 . . . . . . . . 9 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → 𝐼𝑉)
35 inidm 3978 . . . . . . . . 9 (𝐼𝐼) = 𝐼
36 eqidd 2775 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝑦𝑥) = (𝑦𝑥))
37 eqidd 2775 . . . . . . . . 9 ((((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
3818, 33, 34, 34, 35, 36, 37ofrfval 7073 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹 ↔ ∀𝑥𝐼 (𝑦𝑥) ≤ (𝐹𝑥)))
3932, 38bitr4d 272 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (∀𝑥𝐼 (𝑦𝑥) ∈ (0...(𝐹𝑥)) ↔ 𝑦𝑟𝐹))
402psrbaglecl 19604 . . . . . . . . . 10 ((𝐼𝑉 ∧ (𝐹𝐷𝑦:𝐼⟶ℕ0𝑦𝑟𝐹)) → 𝑦𝐷)
41403exp2 1453 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 → (𝑦:𝐼⟶ℕ0 → (𝑦𝑟𝐹𝑦𝐷))))
4241imp31 405 . . . . . . . 8 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹𝑦𝐷))
4342pm4.71rd 553 . . . . . . 7 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → (𝑦𝑟𝐹 ↔ (𝑦𝐷𝑦𝑟𝐹)))
4421, 39, 433bitrrd 296 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑦:𝐼⟶ℕ0) → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4544ex 398 . . . . 5 ((𝐼𝑉𝐹𝐷) → (𝑦:𝐼⟶ℕ0 → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥)))))
467, 16, 45pm5.21ndd 369 . . . 4 ((𝐼𝑉𝐹𝐷) → ((𝑦𝐷𝑦𝑟𝐹) ↔ 𝑦X𝑥𝐼 (0...(𝐹𝑥))))
4746abbi1dv 2895 . . 3 ((𝐼𝑉𝐹𝐷) → {𝑦 ∣ (𝑦𝐷𝑦𝑟𝐹)} = X𝑥𝐼 (0...(𝐹𝑥)))
481, 47syl5eq 2820 . 2 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} = X𝑥𝐼 (0...(𝐹𝑥)))
49 simpr 472 . . . . 5 ((𝐼𝑉𝐹𝐷) → 𝐹𝐷)
50 cnveq 5446 . . . . . . . 8 (𝑓 = 𝐹𝑓 = 𝐹)
5150imaeq1d 5616 . . . . . . 7 (𝑓 = 𝐹 → (𝑓 “ ℕ) = (𝐹 “ ℕ))
5251eleq1d 2838 . . . . . 6 (𝑓 = 𝐹 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐹 “ ℕ) ∈ Fin))
5352, 2elrab2 3524 . . . . 5 (𝐹𝐷 ↔ (𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5449, 53sylib 209 . . . 4 ((𝐼𝑉𝐹𝐷) → (𝐹 ∈ (ℕ0𝑚 𝐼) ∧ (𝐹 “ ℕ) ∈ Fin))
5554simprd 484 . . 3 ((𝐼𝑉𝐹𝐷) → (𝐹 “ ℕ) ∈ Fin)
56 fzfid 13002 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥𝐼) → (0...(𝐹𝑥)) ∈ Fin)
57 simpl 469 . . . . . . . . 9 ((𝐼𝑉𝐹𝐷) → 𝐼𝑉)
5857, 26jca 502 . . . . . . . 8 ((𝐼𝑉𝐹𝐷) → (𝐼𝑉𝐹:𝐼⟶ℕ0))
59 frnnn0supp 11573 . . . . . . . 8 ((𝐼𝑉𝐹:𝐼⟶ℕ0) → (𝐹 supp 0) = (𝐹 “ ℕ))
60 eqimss 3813 . . . . . . . 8 ((𝐹 supp 0) = (𝐹 “ ℕ) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
6158, 59, 603syl 18 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → (𝐹 supp 0) ⊆ (𝐹 “ ℕ))
62 c0ex 10257 . . . . . . . 8 0 ∈ V
6362a1i 11 . . . . . . 7 ((𝐼𝑉𝐹𝐷) → 0 ∈ V)
6426, 61, 57, 63suppssr 7499 . . . . . 6 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (𝐹𝑥) = 0)
6564oveq2d 6828 . . . . 5 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = (0...0))
66 fz0sn 12669 . . . . 5 (0...0) = {0}
6765, 66syl6eq 2824 . . . 4 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) = {0})
68 eqimss 3813 . . . 4 ((0...(𝐹𝑥)) = {0} → (0...(𝐹𝑥)) ⊆ {0})
6967, 68syl 17 . . 3 (((𝐼𝑉𝐹𝐷) ∧ 𝑥 ∈ (𝐼 ∖ (𝐹 “ ℕ))) → (0...(𝐹𝑥)) ⊆ {0})
7055, 56, 69ixpfi2 8441 . 2 ((𝐼𝑉𝐹𝐷) → X𝑥𝐼 (0...(𝐹𝑥)) ∈ Fin)
7148, 70eqeltrd 2853 1 ((𝐼𝑉𝐹𝐷) → {𝑦𝐷𝑦𝑟𝐹} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 383   = wceq 1634  wcel 2148  {cab 2760  wral 3064  {crab 3068  Vcvv 3355  cdif 3726  wss 3729  {csn 4326   class class class wbr 4797  ccnv 5262  cima 5266   Fn wfn 6037  wf 6038  cfv 6042  (class class class)co 6812  𝑟 cofr 7064   supp csupp 7467  𝑚 cmap 8030  Xcixp 8083  Fincfn 8130  0cc0 10159  cle 10298  cn 11243  0cn0 11516  cz 11601  cuz 11910  ...cfz 12555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-ofr 7066  df-om 7234  df-1st 7336  df-2nd 7337  df-supp 7468  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-2o 7735  df-oadd 7738  df-er 7917  df-map 8032  df-pm 8033  df-ixp 8084  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556
This theorem is referenced by:  gsumbagdiag  19611  psrass1lem  19612  psrmulcllem  19622  psrass1  19640  psrdi  19641  psrdir  19642  psrass23l  19643  psrcom  19644  psrass23  19645  resspsrmul  19652  mplsubrglem  19674  mplmonmul  19699  psropprmul  19843
  Copyright terms: Public domain W3C validator