MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagfsupp Structured version   Visualization version   GIF version

Theorem psrbagfsupp 19711
Description: Finite bags have finite nonzero-support. (Contributed by Stefan O'Rear, 9-Mar-2015.) (Revised by AV, 18-Jul-2019.)
Hypothesis
Ref Expression
psrbagfsupp.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagfsupp ((𝑋𝐷𝐼𝑉) → 𝑋 finSupp 0)
Distinct variable groups:   ,𝐼   ,𝑋
Allowed substitution hints:   𝐷()   𝑉()

Proof of Theorem psrbagfsupp
StepHypRef Expression
1 psrbagfsupp.d . . . . 5 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
21psrbag 19566 . . . 4 (𝐼𝑉 → (𝑋𝐷 ↔ (𝑋:𝐼⟶ℕ0 ∧ (𝑋 “ ℕ) ∈ Fin)))
32biimpac 504 . . 3 ((𝑋𝐷𝐼𝑉) → (𝑋:𝐼⟶ℕ0 ∧ (𝑋 “ ℕ) ∈ Fin))
43simprd 482 . 2 ((𝑋𝐷𝐼𝑉) → (𝑋 “ ℕ) ∈ Fin)
5 simpr 479 . . 3 ((𝑋𝐷𝐼𝑉) → 𝐼𝑉)
61psrbagf 19567 . . . 4 ((𝐼𝑉𝑋𝐷) → 𝑋:𝐼⟶ℕ0)
76ancoms 468 . . 3 ((𝑋𝐷𝐼𝑉) → 𝑋:𝐼⟶ℕ0)
8 frnnn0fsupp 11542 . . 3 ((𝐼𝑉𝑋:𝐼⟶ℕ0) → (𝑋 finSupp 0 ↔ (𝑋 “ ℕ) ∈ Fin))
95, 7, 8syl2anc 696 . 2 ((𝑋𝐷𝐼𝑉) → (𝑋 finSupp 0 ↔ (𝑋 “ ℕ) ∈ Fin))
104, 9mpbird 247 1 ((𝑋𝐷𝐼𝑉) → 𝑋 finSupp 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  {crab 3054   class class class wbr 4804  ccnv 5265  cima 5269  wf 6045  (class class class)co 6813  𝑚 cmap 8023  Fincfn 8121   finSupp cfsupp 8440  0cc0 10128  cn 11212  0cn0 11484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fsupp 8441  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485
This theorem is referenced by:  psrbagev1  19712  tdeglem1  24017  tdeglem3  24018  tdeglem4  24019
  Copyright terms: Public domain W3C validator