MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrbagcon Structured version   Visualization version   GIF version

Theorem psrbagcon 19586
Description: The analogue of the statement "0 ≤ 𝐺𝐹 implies 0 ≤ 𝐹𝐺𝐹 " for finite bags. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypothesis
Ref Expression
psrbag.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
Assertion
Ref Expression
psrbagcon ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Distinct variable groups:   𝑓,𝐹   𝑓,𝐺   𝑓,𝐼
Allowed substitution hints:   𝐷(𝑓)   𝑉(𝑓)

Proof of Theorem psrbagcon
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr1 1233 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹𝐷)
2 psrbag.d . . . . . . . . . 10 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
32psrbag 19579 . . . . . . . . 9 (𝐼𝑉 → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
43adantr 466 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝐷 ↔ (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin)))
51, 4mpbid 222 . . . . . . 7 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹:𝐼⟶ℕ0 ∧ (𝐹 “ ℕ) ∈ Fin))
65simpld 482 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹:𝐼⟶ℕ0)
76ffnd 6185 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐹 Fn 𝐼)
8 simpr2 1235 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺:𝐼⟶ℕ0)
98ffnd 6185 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺 Fn 𝐼)
10 simpl 468 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐼𝑉)
11 inidm 3971 . . . . 5 (𝐼𝐼) = 𝐼
127, 9, 10, 10, 11offn 7059 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) Fn 𝐼)
13 eqidd 2772 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) = (𝐹𝑥))
14 eqidd 2772 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) = (𝐺𝑥))
157, 9, 10, 10, 11, 13, 14ofval 7057 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) = ((𝐹𝑥) − (𝐺𝑥)))
16 simpr3 1237 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → 𝐺𝑟𝐹)
179, 7, 10, 10, 11, 14, 13ofrfval 7056 . . . . . . . . 9 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐺𝑟𝐹 ↔ ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥)))
1816, 17mpbid 222 . . . . . . . 8 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 (𝐺𝑥) ≤ (𝐹𝑥))
1918r19.21bi 3081 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ≤ (𝐹𝑥))
208ffvelrnda 6504 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐺𝑥) ∈ ℕ0)
216ffvelrnda 6504 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (𝐹𝑥) ∈ ℕ0)
22 nn0sub 11550 . . . . . . . 8 (((𝐺𝑥) ∈ ℕ0 ∧ (𝐹𝑥) ∈ ℕ0) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2320, 21, 22syl2anc 573 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐺𝑥) ≤ (𝐹𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0))
2419, 23mpbid 222 . . . . . 6 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ∈ ℕ0)
2515, 24eqeltrd 2850 . . . . 5 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
2625ralrimiva 3115 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0)
27 ffnfv 6533 . . . 4 ((𝐹𝑓𝐺):𝐼⟶ℕ0 ↔ ((𝐹𝑓𝐺) Fn 𝐼 ∧ ∀𝑥𝐼 ((𝐹𝑓𝐺)‘𝑥) ∈ ℕ0))
2812, 26, 27sylanbrc 572 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺):𝐼⟶ℕ0)
295simprd 483 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹 “ ℕ) ∈ Fin)
3020nn0ge0d 11561 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → 0 ≤ (𝐺𝑥))
31 nn0re 11508 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℕ0 → (𝐹𝑥) ∈ ℝ)
32 nn0re 11508 . . . . . . . . . 10 ((𝐺𝑥) ∈ ℕ0 → (𝐺𝑥) ∈ ℝ)
33 subge02 10750 . . . . . . . . . 10 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3431, 32, 33syl2an 583 . . . . . . . . 9 (((𝐹𝑥) ∈ ℕ0 ∧ (𝐺𝑥) ∈ ℕ0) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3521, 20, 34syl2anc 573 . . . . . . . 8 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → (0 ≤ (𝐺𝑥) ↔ ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3630, 35mpbid 222 . . . . . . 7 (((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) ∧ 𝑥𝐼) → ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3736ralrimiva 3115 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥))
3812, 7, 10, 10, 11, 15, 13ofrfval 7056 . . . . . 6 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∘𝑟𝐹 ↔ ∀𝑥𝐼 ((𝐹𝑥) − (𝐺𝑥)) ≤ (𝐹𝑥)))
3937, 38mpbird 247 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∘𝑟𝐹)
402psrbaglesupp 19583 . . . . 5 ((𝐼𝑉 ∧ (𝐹𝐷 ∧ (𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
4110, 1, 28, 39, 40syl13anc 1478 . . . 4 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ))
42 ssfi 8340 . . . 4 (((𝐹 “ ℕ) ∈ Fin ∧ ((𝐹𝑓𝐺) “ ℕ) ⊆ (𝐹 “ ℕ)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
4329, 41, 42syl2anc 573 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)
442psrbag 19579 . . . 4 (𝐼𝑉 → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4544adantr 466 . . 3 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ↔ ((𝐹𝑓𝐺):𝐼⟶ℕ0 ∧ ((𝐹𝑓𝐺) “ ℕ) ∈ Fin)))
4628, 43, 45mpbir2and 692 . 2 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → (𝐹𝑓𝐺) ∈ 𝐷)
4746, 39jca 501 1 ((𝐼𝑉 ∧ (𝐹𝐷𝐺:𝐼⟶ℕ0𝐺𝑟𝐹)) → ((𝐹𝑓𝐺) ∈ 𝐷 ∧ (𝐹𝑓𝐺) ∘𝑟𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  wss 3723   class class class wbr 4787  ccnv 5249  cima 5253   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  𝑓 cof 7046  𝑟 cofr 7047  𝑚 cmap 8013  Fincfn 8113  cr 10141  0cc0 10142  cle 10281  cmin 10472  cn 11226  0cn0 11499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-ofr 7049  df-om 7217  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500
This theorem is referenced by:  psrbagconcl  19588  psrbagconf1o  19589  gsumbagdiaglem  19590  psrmulcllem  19602  psrlidm  19618  psrridm  19619  psrass1  19620  psrcom  19624
  Copyright terms: Public domain W3C validator