Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psrass23l Structured version   Visualization version   GIF version

Theorem psrass23l 19623
 Description: Associative identity for the ring of power series. Part of psrass23 19625 which does not require the scalar ring to be commutative. (Contributed by Mario Carneiro, 7-Jan-2015.) (Revised by AV, 14-Aug-2019.)
Hypotheses
Ref Expression
psrring.s 𝑆 = (𝐼 mPwSer 𝑅)
psrring.i (𝜑𝐼𝑉)
psrring.r (𝜑𝑅 ∈ Ring)
psrass.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psrass.t × = (.r𝑆)
psrass.b 𝐵 = (Base‘𝑆)
psrass.x (𝜑𝑋𝐵)
psrass.y (𝜑𝑌𝐵)
psrass23l.k 𝐾 = (Base‘𝑅)
psrass23l.n · = ( ·𝑠𝑆)
psrass23l.a (𝜑𝐴𝐾)
Assertion
Ref Expression
psrass23l (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑓,𝑋   𝑓,𝑌
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑆(𝑓)   · (𝑓)   × (𝑓)   𝐾(𝑓)   𝑉(𝑓)

Proof of Theorem psrass23l
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrring.s . . . . . . . . 9 𝑆 = (𝐼 mPwSer 𝑅)
2 psrass23l.n . . . . . . . . 9 · = ( ·𝑠𝑆)
3 eqid 2771 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
4 psrass.b . . . . . . . . 9 𝐵 = (Base‘𝑆)
5 eqid 2771 . . . . . . . . 9 (.r𝑅) = (.r𝑅)
6 psrass.d . . . . . . . . 9 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
7 psrass23l.a . . . . . . . . . . . 12 (𝜑𝐴𝐾)
87adantr 466 . . . . . . . . . . 11 ((𝜑𝑘𝐷) → 𝐴𝐾)
9 psrass23l.k . . . . . . . . . . 11 𝐾 = (Base‘𝑅)
108, 9syl6eleq 2860 . . . . . . . . . 10 ((𝜑𝑘𝐷) → 𝐴 ∈ (Base‘𝑅))
1110adantr 466 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐴 ∈ (Base‘𝑅))
12 psrass.x . . . . . . . . . 10 (𝜑𝑋𝐵)
1312ad2antrr 705 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋𝐵)
14 ssrab2 3836 . . . . . . . . . 10 {𝑦𝐷𝑦𝑟𝑘} ⊆ 𝐷
15 simpr 471 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘})
1614, 15sseldi 3750 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑥𝐷)
171, 2, 3, 4, 5, 6, 11, 13, 16psrvscaval 19607 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴 · 𝑋)‘𝑥) = (𝐴(.r𝑅)(𝑋𝑥)))
1817oveq1d 6808 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
19 psrring.r . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2019ad2antrr 705 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑅 ∈ Ring)
211, 3, 6, 4, 13psrelbas 19594 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
2221, 16ffvelrnd 6503 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
23 psrass.y . . . . . . . . . . 11 (𝜑𝑌𝐵)
2423ad2antrr 705 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌𝐵)
251, 3, 6, 4, 24psrelbas 19594 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
26 psrring.i . . . . . . . . . . . 12 (𝜑𝐼𝑉)
2726ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝐼𝑉)
28 simplr 752 . . . . . . . . . . 11 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → 𝑘𝐷)
29 eqid 2771 . . . . . . . . . . . 12 {𝑦𝐷𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘}
306, 29psrbagconcl 19588 . . . . . . . . . . 11 ((𝐼𝑉𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
3127, 28, 15, 30syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ {𝑦𝐷𝑦𝑟𝑘})
3214, 31sseldi 3750 . . . . . . . . 9 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑘𝑓𝑥) ∈ 𝐷)
3325, 32ffvelrnd 6503 . . . . . . . 8 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))
343, 5ringass 18772 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐴 ∈ (Base‘𝑅) ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅))) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3520, 11, 22, 33, 34syl13anc 1478 . . . . . . 7 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝐴(.r𝑅)(𝑋𝑥))(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3618, 35eqtrd 2805 . . . . . 6 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) = (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))
3736mpteq2dva 4878 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))
3837oveq2d 6809 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
39 eqid 2771 . . . . 5 (0g𝑅) = (0g𝑅)
40 eqid 2771 . . . . 5 (+g𝑅) = (+g𝑅)
4119adantr 466 . . . . 5 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
426psrbaglefi 19587 . . . . . 6 ((𝐼𝑉𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
4326, 42sylan 569 . . . . 5 ((𝜑𝑘𝐷) → {𝑦𝐷𝑦𝑟𝑘} ∈ Fin)
443, 5ringcl 18769 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅) ∧ (𝑌‘(𝑘𝑓𝑥)) ∈ (Base‘𝑅)) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
4520, 22, 33, 44syl3anc 1476 . . . . 5 (((𝜑𝑘𝐷) ∧ 𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘}) → ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))) ∈ (Base‘𝑅))
46 ovex 6823 . . . . . . . . . 10 (ℕ0𝑚 𝐼) ∈ V
476, 46rabex2 4948 . . . . . . . . 9 𝐷 ∈ V
4847mptrabex 6632 . . . . . . . 8 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V
49 funmpt 6069 . . . . . . . 8 Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
50 fvex 6342 . . . . . . . 8 (0g𝑅) ∈ V
5148, 49, 503pm3.2i 1423 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V)
5251a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V))
53 suppssdm 7459 . . . . . . . 8 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
54 eqid 2771 . . . . . . . . 9 (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))
5554dmmptss 5775 . . . . . . . 8 dom (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ⊆ {𝑦𝐷𝑦𝑟𝑘}
5653, 55sstri 3761 . . . . . . 7 ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘}
5756a1i 11 . . . . . 6 ((𝜑𝑘𝐷) → ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})
58 suppssfifsupp 8446 . . . . . 6 ((((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∈ V ∧ Fun (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) ∧ (0g𝑅) ∈ V) ∧ ({𝑦𝐷𝑦𝑟𝑘} ∈ Fin ∧ ((𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) supp (0g𝑅)) ⊆ {𝑦𝐷𝑦𝑟𝑘})) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
5952, 43, 57, 58syl12anc 1474 . . . . 5 ((𝜑𝑘𝐷) → (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))) finSupp (0g𝑅))
603, 39, 40, 5, 41, 43, 10, 45, 59gsummulc2 18815 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (𝐴(.r𝑅)((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6138, 60eqtrd 2805 . . 3 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) = (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
6261mpteq2dva 4878 . 2 (𝜑 → (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
63 psrass.t . . 3 × = (.r𝑆)
641, 2, 9, 4, 19, 7, 12psrvscacl 19608 . . 3 (𝜑 → (𝐴 · 𝑋) ∈ 𝐵)
651, 4, 5, 63, 6, 64, 23psrmulfval 19600 . 2 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ (((𝐴 · 𝑋)‘𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
661, 4, 63, 19, 12, 23psrmulcl 19603 . . . 4 (𝜑 → (𝑋 × 𝑌) ∈ 𝐵)
671, 2, 9, 4, 5, 6, 7, 66psrvsca 19606 . . 3 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)))
6847a1i 11 . . . 4 (𝜑𝐷 ∈ V)
69 ovexd 6825 . . . 4 ((𝜑𝑘𝐷) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))) ∈ V)
70 fconstmpt 5303 . . . . 5 (𝐷 × {𝐴}) = (𝑘𝐷𝐴)
7170a1i 11 . . . 4 (𝜑 → (𝐷 × {𝐴}) = (𝑘𝐷𝐴))
721, 4, 5, 63, 6, 12, 23psrmulfval 19600 . . . 4 (𝜑 → (𝑋 × 𝑌) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥)))))))
7368, 8, 69, 71, 72offval2 7061 . . 3 (𝜑 → ((𝐷 × {𝐴}) ∘𝑓 (.r𝑅)(𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
7467, 73eqtrd 2805 . 2 (𝜑 → (𝐴 · (𝑋 × 𝑌)) = (𝑘𝐷 ↦ (𝐴(.r𝑅)(𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑋𝑥)(.r𝑅)(𝑌‘(𝑘𝑓𝑥))))))))
7562, 65, 743eqtr4d 2815 1 (𝜑 → ((𝐴 · 𝑋) × 𝑌) = (𝐴 · (𝑋 × 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351   ⊆ wss 3723  {csn 4316   class class class wbr 4786   ↦ cmpt 4863   × cxp 5247  ◡ccnv 5248  dom cdm 5249   “ cima 5252  Fun wfun 6025  ‘cfv 6031  (class class class)co 6793   ∘𝑓 cof 7042   ∘𝑟 cofr 7043   supp csupp 7446   ↑𝑚 cmap 8009  Fincfn 8109   finSupp cfsupp 8431   ≤ cle 10277   − cmin 10468  ℕcn 11222  ℕ0cn0 11494  Basecbs 16064  +gcplusg 16149  .rcmulr 16150   ·𝑠 cvsca 16153  0gc0g 16308   Σg cgsu 16309  Ringcrg 18755   mPwSer cmps 19566 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-0g 16310  df-gsum 16311  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-grp 17633  df-minusg 17634  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-psr 19571 This theorem is referenced by:  psrass23  19625  ply1ass23l  42698
 Copyright terms: Public domain W3C validator