![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psr1cl | Structured version Visualization version GIF version |
Description: The identity element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
psrring.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
psrring.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
psrring.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
psr1cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
psr1cl.z | ⊢ 0 = (0g‘𝑅) |
psr1cl.o | ⊢ 1 = (1r‘𝑅) |
psr1cl.u | ⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) |
psr1cl.b | ⊢ 𝐵 = (Base‘𝑆) |
Ref | Expression |
---|---|
psr1cl | ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psrring.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
2 | eqid 2771 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | psr1cl.o | . . . . . . . 8 ⊢ 1 = (1r‘𝑅) | |
4 | 2, 3 | ringidcl 18776 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
5 | psr1cl.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑅) | |
6 | 2, 5 | ring0cl 18777 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅)) |
7 | 4, 6 | ifcld 4271 | . . . . . 6 ⊢ (𝑅 ∈ Ring → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅)) |
8 | 1, 7 | syl 17 | . . . . 5 ⊢ (𝜑 → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅)) |
9 | 8 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → if(𝑥 = (𝐼 × {0}), 1 , 0 ) ∈ (Base‘𝑅)) |
10 | psr1cl.u | . . . 4 ⊢ 𝑈 = (𝑥 ∈ 𝐷 ↦ if(𝑥 = (𝐼 × {0}), 1 , 0 )) | |
11 | 9, 10 | fmptd 6529 | . . 3 ⊢ (𝜑 → 𝑈:𝐷⟶(Base‘𝑅)) |
12 | fvex 6344 | . . . 4 ⊢ (Base‘𝑅) ∈ V | |
13 | psr1cl.d | . . . . 5 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
14 | ovex 6827 | . . . . 5 ⊢ (ℕ0 ↑𝑚 𝐼) ∈ V | |
15 | 13, 14 | rabex2 4949 | . . . 4 ⊢ 𝐷 ∈ V |
16 | 12, 15 | elmap 8042 | . . 3 ⊢ (𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ 𝑈:𝐷⟶(Base‘𝑅)) |
17 | 11, 16 | sylibr 224 | . 2 ⊢ (𝜑 → 𝑈 ∈ ((Base‘𝑅) ↑𝑚 𝐷)) |
18 | psrring.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
19 | psr1cl.b | . . 3 ⊢ 𝐵 = (Base‘𝑆) | |
20 | psrring.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
21 | 18, 2, 13, 19, 20 | psrbas 19593 | . 2 ⊢ (𝜑 → 𝐵 = ((Base‘𝑅) ↑𝑚 𝐷)) |
22 | 17, 21 | eleqtrrd 2853 | 1 ⊢ (𝜑 → 𝑈 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 {crab 3065 ifcif 4226 {csn 4317 ↦ cmpt 4864 × cxp 5248 ◡ccnv 5249 “ cima 5253 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ↑𝑚 cmap 8013 Fincfn 8113 0cc0 10142 ℕcn 11226 ℕ0cn0 11499 Basecbs 16064 0gc0g 16308 1rcur 18709 Ringcrg 18755 mPwSer cmps 19566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-7 11290 df-8 11291 df-9 11292 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-tset 16168 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-mgp 18698 df-ur 18710 df-ring 18757 df-psr 19571 |
This theorem is referenced by: psrlidm 19618 psrridm 19619 psrring 19626 psr1 19627 |
Copyright terms: Public domain | W3C validator |