MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psr0cl Structured version   Visualization version   GIF version

Theorem psr0cl 19609
Description: The zero element of the ring of power series. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrgrp.s 𝑆 = (𝐼 mPwSer 𝑅)
psrgrp.i (𝜑𝐼𝑉)
psrgrp.r (𝜑𝑅 ∈ Grp)
psr0cl.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
psr0cl.o 0 = (0g𝑅)
psr0cl.b 𝐵 = (Base‘𝑆)
Assertion
Ref Expression
psr0cl (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
Distinct variable group:   𝑓,𝐼
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑓)   𝐷(𝑓)   𝑅(𝑓)   𝑆(𝑓)   𝑉(𝑓)   0 (𝑓)

Proof of Theorem psr0cl
StepHypRef Expression
1 psrgrp.r . . . 4 (𝜑𝑅 ∈ Grp)
2 eqid 2771 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 psr0cl.o . . . . 5 0 = (0g𝑅)
42, 3grpidcl 17658 . . . 4 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
5 fconst6g 6235 . . . 4 ( 0 ∈ (Base‘𝑅) → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
61, 4, 53syl 18 . . 3 (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
7 fvex 6344 . . . 4 (Base‘𝑅) ∈ V
8 psr0cl.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
9 ovex 6827 . . . . 5 (ℕ0𝑚 𝐼) ∈ V
108, 9rabex2 4949 . . . 4 𝐷 ∈ V
117, 10elmap 8042 . . 3 ((𝐷 × { 0 }) ∈ ((Base‘𝑅) ↑𝑚 𝐷) ↔ (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
126, 11sylibr 224 . 2 (𝜑 → (𝐷 × { 0 }) ∈ ((Base‘𝑅) ↑𝑚 𝐷))
13 psrgrp.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
14 psr0cl.b . . 3 𝐵 = (Base‘𝑆)
15 psrgrp.i . . 3 (𝜑𝐼𝑉)
1613, 2, 8, 14, 15psrbas 19593 . 2 (𝜑𝐵 = ((Base‘𝑅) ↑𝑚 𝐷))
1712, 16eleqtrrd 2853 1 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1631  wcel 2145  {crab 3065  {csn 4317   × cxp 5248  ccnv 5249  cima 5253  wf 6026  cfv 6030  (class class class)co 6796  𝑚 cmap 8013  Fincfn 8113  cn 11226  0cn0 11499  Basecbs 16064  0gc0g 16308  Grpcgrp 17630   mPwSer cmps 19566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-oadd 7721  df-er 7900  df-map 8015  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-plusg 16162  df-mulr 16163  df-sca 16165  df-vsca 16166  df-tset 16168  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-grp 17633  df-psr 19571
This theorem is referenced by:  psr0lid  19610  psrgrp  19613  psr0  19614  mplsubglem  19649
  Copyright terms: Public domain W3C validator