MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnvalii Structured version   Visualization version   GIF version

Theorem psgnvalii 18129
Description: Any representation of a permutation is length matching the permutation sign. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnval.g 𝐺 = (SymGrp‘𝐷)
psgnval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnvalii ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊)))

Proof of Theorem psgnvalii
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psgnval.g . . . 4 𝐺 = (SymGrp‘𝐷)
2 psgnval.t . . . 4 𝑇 = ran (pmTrsp‘𝐷)
3 psgnval.n . . . 4 𝑁 = (pmSgn‘𝐷)
41, 2, 3psgneldm2i 18125 . . 3 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) ∈ dom 𝑁)
51, 2, 3psgnval 18127 . . 3 ((𝐺 Σg 𝑊) ∈ dom 𝑁 → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
64, 5syl 17 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (℩𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
7 simpr 479 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → 𝑊 ∈ Word 𝑇)
8 eqidd 2761 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊))
9 eqidd 2761 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))
10 oveq2 6821 . . . . . . 7 (𝑤 = 𝑊 → (𝐺 Σg 𝑤) = (𝐺 Σg 𝑊))
1110eqeq2d 2770 . . . . . 6 (𝑤 = 𝑊 → ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ↔ (𝐺 Σg 𝑊) = (𝐺 Σg 𝑊)))
12 fveq2 6352 . . . . . . . 8 (𝑤 = 𝑊 → (♯‘𝑤) = (♯‘𝑊))
1312oveq2d 6829 . . . . . . 7 (𝑤 = 𝑊 → (-1↑(♯‘𝑤)) = (-1↑(♯‘𝑊)))
1413eqeq2d 2770 . . . . . 6 (𝑤 = 𝑊 → ((-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊))))
1511, 14anbi12d 749 . . . . 5 (𝑤 = 𝑊 → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))))
1615rspcev 3449 . . . 4 ((𝑊 ∈ Word 𝑇 ∧ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑊) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑊)))) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))
177, 8, 9, 16syl12anc 1475 . . 3 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))
18 ovexd 6843 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (-1↑(♯‘𝑊)) ∈ V)
191, 2, 3psgneu 18126 . . . . 5 ((𝐺 Σg 𝑊) ∈ dom 𝑁 → ∃!𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
204, 19syl 17 . . . 4 ((𝐷𝑉𝑊 ∈ Word 𝑇) → ∃!𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))
21 eqeq1 2764 . . . . . . 7 (𝑠 = (-1↑(♯‘𝑊)) → (𝑠 = (-1↑(♯‘𝑤)) ↔ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))))
2221anbi2d 742 . . . . . 6 (𝑠 = (-1↑(♯‘𝑊)) → (((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))))
2322rexbidv 3190 . . . . 5 (𝑠 = (-1↑(♯‘𝑊)) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))))
2423adantl 473 . . . 4 (((𝐷𝑉𝑊 ∈ Word 𝑇) ∧ 𝑠 = (-1↑(♯‘𝑊))) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤)))))
2518, 20, 24iota2d 6037 . . 3 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (∃𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ (-1↑(♯‘𝑊)) = (-1↑(♯‘𝑤))) ↔ (℩𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊))))
2617, 25mpbid 222 . 2 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (℩𝑠𝑤 ∈ Word 𝑇((𝐺 Σg 𝑊) = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (-1↑(♯‘𝑊)))
276, 26eqtrd 2794 1 ((𝐷𝑉𝑊 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 𝑊)) = (-1↑(♯‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  ∃!weu 2607  wrex 3051  Vcvv 3340  dom cdm 5266  ran crn 5267  cio 6010  cfv 6049  (class class class)co 6813  1c1 10129  -cneg 10459  cexp 13054  chash 13311  Word cword 13477   Σg cgsu 16303  SymGrpcsymg 17997  pmTrspcpmtr 18061  pmSgncpsgn 18109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-xor 1614  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-rp 12026  df-fz 12520  df-fzo 12660  df-seq 12996  df-exp 13055  df-hash 13312  df-word 13485  df-lsw 13486  df-concat 13487  df-s1 13488  df-substr 13489  df-splice 13490  df-reverse 13491  df-s2 13793  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-tset 16162  df-0g 16304  df-gsum 16305  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-mhm 17536  df-submnd 17537  df-grp 17626  df-minusg 17627  df-subg 17792  df-ghm 17859  df-gim 17902  df-oppg 17976  df-symg 17998  df-pmtr 18062  df-psgn 18111
This theorem is referenced by:  psgnpmtr  18130  psgn0fv0  18131  psgnsn  18140  psgnprfval1  18142  psgnghm  20128
  Copyright terms: Public domain W3C validator