![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnsn | Structured version Visualization version GIF version |
Description: The permutation sign function for a singleton. (Contributed by AV, 6-Aug-2019.) |
Ref | Expression |
---|---|
psgnsn.0 | ⊢ 𝐷 = {𝐴} |
psgnsn.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnsn.b | ⊢ 𝐵 = (Base‘𝐺) |
psgnsn.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnsn | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2651 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
2 | 1 | gsum0 17325 | . . . 4 ⊢ (𝐺 Σg ∅) = (0g‘𝐺) |
3 | psgnsn.g | . . . . . . . 8 ⊢ 𝐺 = (SymGrp‘𝐷) | |
4 | psgnsn.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐺) | |
5 | psgnsn.0 | . . . . . . . 8 ⊢ 𝐷 = {𝐴} | |
6 | 3, 4, 5 | symg1bas 17862 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → 𝐵 = {{〈𝐴, 𝐴〉}}) |
7 | 6 | eleq2d 2716 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ {{〈𝐴, 𝐴〉}})) |
8 | 7 | biimpa 500 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ {{〈𝐴, 𝐴〉}}) |
9 | elsni 4227 | . . . . . 6 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → 𝑋 = {〈𝐴, 𝐴〉}) | |
10 | 5 | reseq2i 5425 | . . . . . . . . . 10 ⊢ ( I ↾ 𝐷) = ( I ↾ {𝐴}) |
11 | snex 4938 | . . . . . . . . . . . . 13 ⊢ {𝐴} ∈ V | |
12 | 11 | snid 4241 | . . . . . . . . . . . 12 ⊢ {𝐴} ∈ {{𝐴}} |
13 | 5, 12 | eqeltri 2726 | . . . . . . . . . . 11 ⊢ 𝐷 ∈ {{𝐴}} |
14 | 3 | symgid 17867 | . . . . . . . . . . 11 ⊢ (𝐷 ∈ {{𝐴}} → ( I ↾ 𝐷) = (0g‘𝐺)) |
15 | 13, 14 | mp1i 13 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐷) = (0g‘𝐺)) |
16 | restidsing 5493 | . . . . . . . . . . 11 ⊢ ( I ↾ {𝐴}) = ({𝐴} × {𝐴}) | |
17 | xpsng 6446 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉) → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) | |
18 | 17 | anidms 678 | . . . . . . . . . . 11 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} × {𝐴}) = {〈𝐴, 𝐴〉}) |
19 | 16, 18 | syl5eq 2697 | . . . . . . . . . 10 ⊢ (𝐴 ∈ 𝑉 → ( I ↾ {𝐴}) = {〈𝐴, 𝐴〉}) |
20 | 10, 15, 19 | 3eqtr3a 2709 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑉 → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
21 | 20 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = {〈𝐴, 𝐴〉}) |
22 | id 22 | . . . . . . . . 9 ⊢ ({〈𝐴, 𝐴〉} = 𝑋 → {〈𝐴, 𝐴〉} = 𝑋) | |
23 | 22 | eqcoms 2659 | . . . . . . . 8 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → {〈𝐴, 𝐴〉} = 𝑋) |
24 | 21, 23 | sylan9eqr 2707 | . . . . . . 7 ⊢ ((𝑋 = {〈𝐴, 𝐴〉} ∧ (𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵)) → (0g‘𝐺) = 𝑋) |
25 | 24 | ex 449 | . . . . . 6 ⊢ (𝑋 = {〈𝐴, 𝐴〉} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
26 | 9, 25 | syl 17 | . . . . 5 ⊢ (𝑋 ∈ {{〈𝐴, 𝐴〉}} → ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋)) |
27 | 8, 26 | mpcom 38 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (0g‘𝐺) = 𝑋) |
28 | 2, 27 | syl5req 2698 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → 𝑋 = (𝐺 Σg ∅)) |
29 | 28 | fveq2d 6233 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑁‘(𝐺 Σg ∅))) |
30 | 5, 11 | eqeltri 2726 | . . . 4 ⊢ 𝐷 ∈ V |
31 | wrd0 13362 | . . . 4 ⊢ ∅ ∈ Word ∅ | |
32 | 30, 31 | pm3.2i 470 | . . 3 ⊢ (𝐷 ∈ V ∧ ∅ ∈ Word ∅) |
33 | 5 | fveq2i 6232 | . . . . . . 7 ⊢ (pmTrsp‘𝐷) = (pmTrsp‘{𝐴}) |
34 | pmtrsn 17985 | . . . . . . 7 ⊢ (pmTrsp‘{𝐴}) = ∅ | |
35 | 33, 34 | eqtri 2673 | . . . . . 6 ⊢ (pmTrsp‘𝐷) = ∅ |
36 | 35 | rneqi 5384 | . . . . 5 ⊢ ran (pmTrsp‘𝐷) = ran ∅ |
37 | rn0 5409 | . . . . 5 ⊢ ran ∅ = ∅ | |
38 | 36, 37 | eqtr2i 2674 | . . . 4 ⊢ ∅ = ran (pmTrsp‘𝐷) |
39 | psgnsn.n | . . . 4 ⊢ 𝑁 = (pmSgn‘𝐷) | |
40 | 3, 38, 39 | psgnvalii 17975 | . . 3 ⊢ ((𝐷 ∈ V ∧ ∅ ∈ Word ∅) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(#‘∅))) |
41 | 32, 40 | mp1i 13 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝐺 Σg ∅)) = (-1↑(#‘∅))) |
42 | hash0 13196 | . . . . 5 ⊢ (#‘∅) = 0 | |
43 | 42 | oveq2i 6701 | . . . 4 ⊢ (-1↑(#‘∅)) = (-1↑0) |
44 | neg1cn 11162 | . . . . 5 ⊢ -1 ∈ ℂ | |
45 | exp0 12904 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑0) = 1) | |
46 | 44, 45 | ax-mp 5 | . . . 4 ⊢ (-1↑0) = 1 |
47 | 43, 46 | eqtri 2673 | . . 3 ⊢ (-1↑(#‘∅)) = 1 |
48 | 47 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (-1↑(#‘∅)) = 1) |
49 | 29, 41, 48 | 3eqtrd 2689 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ∅c0 3948 {csn 4210 〈cop 4216 I cid 5052 × cxp 5141 ran crn 5144 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 0cc0 9974 1c1 9975 -cneg 10305 ↑cexp 12900 #chash 13157 Word cword 13323 Basecbs 15904 0gc0g 16147 Σg cgsu 16148 SymGrpcsymg 17843 pmTrspcpmtr 17907 pmSgncpsgn 17955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-xor 1505 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-lsw 13332 df-concat 13333 df-s1 13334 df-substr 13335 df-splice 13336 df-reverse 13337 df-s2 13639 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-tset 16007 df-0g 16149 df-gsum 16150 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-subg 17638 df-ghm 17705 df-gim 17748 df-oppg 17822 df-symg 17844 df-pmtr 17908 df-psgn 17957 |
This theorem is referenced by: m1detdiag 20451 |
Copyright terms: Public domain | W3C validator |