Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnprfval2 Structured version   Visualization version   GIF version

Theorem psgnprfval2 18149
 Description: The permutation sign of the transposition for a pair. (Contributed by AV, 10-Dec-2018.)
Hypotheses
Ref Expression
psgnprfval.0 𝐷 = {1, 2}
psgnprfval.g 𝐺 = (SymGrp‘𝐷)
psgnprfval.b 𝐵 = (Base‘𝐺)
psgnprfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnprfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnprfval2 (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1

Proof of Theorem psgnprfval2
StepHypRef Expression
1 prex 5037 . . . . 5 {⟨1, 2⟩, ⟨2, 1⟩} ∈ V
21snid 4345 . . . 4 {⟨1, 2⟩, ⟨2, 1⟩} ∈ {{⟨1, 2⟩, ⟨2, 1⟩}}
3 psgnprfval.0 . . . . . . 7 𝐷 = {1, 2}
43fveq2i 6335 . . . . . 6 (pmTrsp‘𝐷) = (pmTrsp‘{1, 2})
54rneqi 5490 . . . . 5 ran (pmTrsp‘𝐷) = ran (pmTrsp‘{1, 2})
6 pmtrprfvalrn 18114 . . . . 5 ran (pmTrsp‘{1, 2}) = {{⟨1, 2⟩, ⟨2, 1⟩}}
75, 6eqtri 2792 . . . 4 ran (pmTrsp‘𝐷) = {{⟨1, 2⟩, ⟨2, 1⟩}}
82, 7eleqtrri 2848 . . 3 {⟨1, 2⟩, ⟨2, 1⟩} ∈ ran (pmTrsp‘𝐷)
9 psgnprfval.t . . 3 𝑇 = ran (pmTrsp‘𝐷)
108, 9eleqtrri 2848 . 2 {⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇
11 psgnprfval.g . . 3 𝐺 = (SymGrp‘𝐷)
12 psgnprfval.n . . 3 𝑁 = (pmSgn‘𝐷)
1311, 9, 12psgnpmtr 18136 . 2 ({⟨1, 2⟩, ⟨2, 1⟩} ∈ 𝑇 → (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1)
1410, 13ax-mp 5 1 (𝑁‘{⟨1, 2⟩, ⟨2, 1⟩}) = -1
 Colors of variables: wff setvar class Syntax hints:   = wceq 1630   ∈ wcel 2144  {csn 4314  {cpr 4316  ⟨cop 4320  ran crn 5250  ‘cfv 6031  1c1 10138  -cneg 10468  2c2 11271  Basecbs 16063  SymGrpcsymg 18003  pmTrspcpmtr 18067  pmSgncpsgn 18115 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-cda 9191  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-reverse 13500  df-s2 13801  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-tset 16167  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-subg 17798  df-ghm 17865  df-gim 17908  df-oppg 17982  df-symg 18004  df-pmtr 18068  df-psgn 18117 This theorem is referenced by:  m2detleiblem1  20647  m2detleiblem6  20649
 Copyright terms: Public domain W3C validator