![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnpmtr | Structured version Visualization version GIF version |
Description: All transpositions are odd. (Contributed by Stefan O'Rear, 29-Aug-2015.) |
Ref | Expression |
---|---|
psgnval.g | ⊢ 𝐺 = (SymGrp‘𝐷) |
psgnval.t | ⊢ 𝑇 = ran (pmTrsp‘𝐷) |
psgnval.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnpmtr | ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psgnval.t | . . . . . 6 ⊢ 𝑇 = ran (pmTrsp‘𝐷) | |
2 | psgnval.g | . . . . . 6 ⊢ 𝐺 = (SymGrp‘𝐷) | |
3 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
4 | 1, 2, 3 | symgtrf 17935 | . . . . 5 ⊢ 𝑇 ⊆ (Base‘𝐺) |
5 | 4 | sseli 3632 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 𝑃 ∈ (Base‘𝐺)) |
6 | 3 | gsumws1 17423 | . . . 4 ⊢ (𝑃 ∈ (Base‘𝐺) → (𝐺 Σg 〈“𝑃”〉) = 𝑃) |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝑃 ∈ 𝑇 → (𝐺 Σg 〈“𝑃”〉) = 𝑃) |
8 | 7 | fveq2d 6233 | . 2 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (𝑁‘𝑃)) |
9 | 2, 3 | elbasfv 15967 | . . . . 5 ⊢ (𝑃 ∈ (Base‘𝐺) → 𝐷 ∈ V) |
10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 𝐷 ∈ V) |
11 | s1cl 13418 | . . . 4 ⊢ (𝑃 ∈ 𝑇 → 〈“𝑃”〉 ∈ Word 𝑇) | |
12 | psgnval.n | . . . . 5 ⊢ 𝑁 = (pmSgn‘𝐷) | |
13 | 2, 1, 12 | psgnvalii 17975 | . . . 4 ⊢ ((𝐷 ∈ V ∧ 〈“𝑃”〉 ∈ Word 𝑇) → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (-1↑(#‘〈“𝑃”〉))) |
14 | 10, 11, 13 | syl2anc 694 | . . 3 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = (-1↑(#‘〈“𝑃”〉))) |
15 | s1len 13422 | . . . . 5 ⊢ (#‘〈“𝑃”〉) = 1 | |
16 | 15 | oveq2i 6701 | . . . 4 ⊢ (-1↑(#‘〈“𝑃”〉)) = (-1↑1) |
17 | neg1cn 11162 | . . . . 5 ⊢ -1 ∈ ℂ | |
18 | exp1 12906 | . . . . 5 ⊢ (-1 ∈ ℂ → (-1↑1) = -1) | |
19 | 17, 18 | ax-mp 5 | . . . 4 ⊢ (-1↑1) = -1 |
20 | 16, 19 | eqtri 2673 | . . 3 ⊢ (-1↑(#‘〈“𝑃”〉)) = -1 |
21 | 14, 20 | syl6eq 2701 | . 2 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘(𝐺 Σg 〈“𝑃”〉)) = -1) |
22 | 8, 21 | eqtr3d 2687 | 1 ⊢ (𝑃 ∈ 𝑇 → (𝑁‘𝑃) = -1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 Vcvv 3231 ran crn 5144 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 1c1 9975 -cneg 10305 ↑cexp 12900 #chash 13157 Word cword 13323 〈“cs1 13326 Basecbs 15904 Σg cgsu 16148 SymGrpcsymg 17843 pmTrspcpmtr 17907 pmSgncpsgn 17955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-xor 1505 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-ot 4219 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-se 5103 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-isom 5935 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-7 11122 df-8 11123 df-9 11124 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-rp 11871 df-fz 12365 df-fzo 12505 df-seq 12842 df-exp 12901 df-hash 13158 df-word 13331 df-lsw 13332 df-concat 13333 df-s1 13334 df-substr 13335 df-splice 13336 df-reverse 13337 df-s2 13639 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-tset 16007 df-0g 16149 df-gsum 16150 df-mre 16293 df-mrc 16294 df-acs 16296 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-mhm 17382 df-submnd 17383 df-grp 17472 df-minusg 17473 df-subg 17638 df-ghm 17705 df-gim 17748 df-oppg 17822 df-symg 17844 df-pmtr 17908 df-psgn 17957 |
This theorem is referenced by: psgnprfval2 17989 pmtrodpm 19991 mdetralt 20462 psgnfzto1st 29983 |
Copyright terms: Public domain | W3C validator |