![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnodpm | Structured version Visualization version GIF version |
Description: A permutation which is odd (i.e. not even) has sign -1. (Contributed by SO, 9-Jul-2018.) |
Ref | Expression |
---|---|
evpmss.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
evpmss.p | ⊢ 𝑃 = (Base‘𝑆) |
psgnevpmb.n | ⊢ 𝑁 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnodpm | ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3733 | . . 3 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) ↔ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) | |
2 | simpr 471 | . . . . . . . 8 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → 𝐹 ∈ 𝑃) | |
3 | 2 | a1d 25 | . . . . . . 7 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ 𝑃)) |
4 | 3 | ancrd 541 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
5 | evpmss.s | . . . . . . . 8 ⊢ 𝑆 = (SymGrp‘𝐷) | |
6 | evpmss.p | . . . . . . . 8 ⊢ 𝑃 = (Base‘𝑆) | |
7 | psgnevpmb.n | . . . . . . . 8 ⊢ 𝑁 = (pmSgn‘𝐷) | |
8 | 5, 6, 7 | psgnevpmb 20148 | . . . . . . 7 ⊢ (𝐷 ∈ Fin → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
9 | 8 | adantr 466 | . . . . . 6 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (𝐹 ∈ (pmEven‘𝐷) ↔ (𝐹 ∈ 𝑃 ∧ (𝑁‘𝐹) = 1))) |
10 | 4, 9 | sylibrd 249 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → ((𝑁‘𝐹) = 1 → 𝐹 ∈ (pmEven‘𝐷))) |
11 | 10 | con3d 149 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ 𝑃) → (¬ 𝐹 ∈ (pmEven‘𝐷) → ¬ (𝑁‘𝐹) = 1)) |
12 | 11 | impr 442 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ (𝐹 ∈ 𝑃 ∧ ¬ 𝐹 ∈ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
13 | 1, 12 | sylan2b 581 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ¬ (𝑁‘𝐹) = 1) |
14 | eqid 2771 | . . . . . . 7 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
15 | 5, 7, 14 | psgnghm2 20142 | . . . . . 6 ⊢ (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
16 | 15 | adantr 466 | . . . . 5 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
17 | 14 | cnmsgnbas 20139 | . . . . . 6 ⊢ {1, -1} = (Base‘((mulGrp‘ℂfld) ↾s {1, -1})) |
18 | 6, 17 | ghmf 17872 | . . . . 5 ⊢ (𝑁 ∈ (𝑆 GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → 𝑁:𝑃⟶{1, -1}) |
19 | 16, 18 | syl 17 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝑁:𝑃⟶{1, -1}) |
20 | eldifi 3883 | . . . . 5 ⊢ (𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷)) → 𝐹 ∈ 𝑃) | |
21 | 20 | adantl 467 | . . . 4 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → 𝐹 ∈ 𝑃) |
22 | 19, 21 | ffvelrnd 6503 | . . 3 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) ∈ {1, -1}) |
23 | fvex 6342 | . . . 4 ⊢ (𝑁‘𝐹) ∈ V | |
24 | 23 | elpr 4338 | . . 3 ⊢ ((𝑁‘𝐹) ∈ {1, -1} ↔ ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
25 | 22, 24 | sylib 208 | . 2 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → ((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1)) |
26 | orel1 875 | . 2 ⊢ (¬ (𝑁‘𝐹) = 1 → (((𝑁‘𝐹) = 1 ∨ (𝑁‘𝐹) = -1) → (𝑁‘𝐹) = -1)) | |
27 | 13, 25, 26 | sylc 65 | 1 ⊢ ((𝐷 ∈ Fin ∧ 𝐹 ∈ (𝑃 ∖ (pmEven‘𝐷))) → (𝑁‘𝐹) = -1) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 382 ∨ wo 836 = wceq 1631 ∈ wcel 2145 ∖ cdif 3720 {cpr 4318 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 Fincfn 8109 1c1 10139 -cneg 10469 Basecbs 16064 ↾s cress 16065 GrpHom cghm 17865 SymGrpcsymg 18004 pmSgncpsgn 18116 pmEvencevpm 18117 mulGrpcmgp 18697 ℂfldccnfld 19961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-xor 1613 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-card 8965 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-xnn0 11566 df-z 11580 df-dec 11696 df-uz 11889 df-rp 12036 df-fz 12534 df-fzo 12674 df-seq 13009 df-exp 13068 df-hash 13322 df-word 13495 df-lsw 13496 df-concat 13497 df-s1 13498 df-substr 13499 df-splice 13500 df-reverse 13501 df-s2 13802 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-subg 17799 df-ghm 17866 df-gim 17909 df-oppg 17983 df-symg 18005 df-pmtr 18069 df-psgn 18118 df-evpm 18119 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-cring 18758 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-cnfld 19962 |
This theorem is referenced by: zrhpsgnodpm 20153 evpmodpmf1o 20158 |
Copyright terms: Public domain | W3C validator |