![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > psgnid | Structured version Visualization version GIF version |
Description: Permutation sign of the identity. (Contributed by Thierry Arnoux, 21-Aug-2020.) |
Ref | Expression |
---|---|
psgnid.s | ⊢ 𝑆 = (pmSgn‘𝐷) |
Ref | Expression |
---|---|
psgnid | ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2752 | . . . 4 ⊢ (SymGrp‘𝐷) = (SymGrp‘𝐷) | |
2 | 1 | symgid 18013 | . . 3 ⊢ (𝐷 ∈ Fin → ( I ↾ 𝐷) = (0g‘(SymGrp‘𝐷))) |
3 | 2 | fveq2d 6348 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = (𝑆‘(0g‘(SymGrp‘𝐷)))) |
4 | psgnid.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝐷) | |
5 | eqid 2752 | . . . 4 ⊢ ((mulGrp‘ℂfld) ↾s {1, -1}) = ((mulGrp‘ℂfld) ↾s {1, -1}) | |
6 | 1, 4, 5 | psgnghm2 20121 | . . 3 ⊢ (𝐷 ∈ Fin → 𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1}))) |
7 | eqid 2752 | . . . 4 ⊢ (0g‘(SymGrp‘𝐷)) = (0g‘(SymGrp‘𝐷)) | |
8 | cnring 19962 | . . . . . 6 ⊢ ℂfld ∈ Ring | |
9 | eqid 2752 | . . . . . . 7 ⊢ (mulGrp‘ℂfld) = (mulGrp‘ℂfld) | |
10 | 9 | ringmgp 18745 | . . . . . 6 ⊢ (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd) |
11 | 8, 10 | ax-mp 5 | . . . . 5 ⊢ (mulGrp‘ℂfld) ∈ Mnd |
12 | 1ex 10219 | . . . . . 6 ⊢ 1 ∈ V | |
13 | 12 | prid1 4433 | . . . . 5 ⊢ 1 ∈ {1, -1} |
14 | ax-1cn 10178 | . . . . . 6 ⊢ 1 ∈ ℂ | |
15 | 14 | negcli 10533 | . . . . . 6 ⊢ -1 ∈ ℂ |
16 | prssi 4490 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ -1 ∈ ℂ) → {1, -1} ⊆ ℂ) | |
17 | 14, 15, 16 | mp2an 710 | . . . . 5 ⊢ {1, -1} ⊆ ℂ |
18 | cnfldbas 19944 | . . . . . . 7 ⊢ ℂ = (Base‘ℂfld) | |
19 | 9, 18 | mgpbas 18687 | . . . . . 6 ⊢ ℂ = (Base‘(mulGrp‘ℂfld)) |
20 | cnfld1 19965 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
21 | 9, 20 | ringidval 18695 | . . . . . 6 ⊢ 1 = (0g‘(mulGrp‘ℂfld)) |
22 | 5, 19, 21 | ress0g 17512 | . . . . 5 ⊢ (((mulGrp‘ℂfld) ∈ Mnd ∧ 1 ∈ {1, -1} ∧ {1, -1} ⊆ ℂ) → 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1}))) |
23 | 11, 13, 17, 22 | mp3an 1565 | . . . 4 ⊢ 1 = (0g‘((mulGrp‘ℂfld) ↾s {1, -1})) |
24 | 7, 23 | ghmid 17859 | . . 3 ⊢ (𝑆 ∈ ((SymGrp‘𝐷) GrpHom ((mulGrp‘ℂfld) ↾s {1, -1})) → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
25 | 6, 24 | syl 17 | . 2 ⊢ (𝐷 ∈ Fin → (𝑆‘(0g‘(SymGrp‘𝐷))) = 1) |
26 | 3, 25 | eqtrd 2786 | 1 ⊢ (𝐷 ∈ Fin → (𝑆‘( I ↾ 𝐷)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1624 ∈ wcel 2131 ⊆ wss 3707 {cpr 4315 I cid 5165 ↾ cres 5260 ‘cfv 6041 (class class class)co 6805 Fincfn 8113 ℂcc 10118 1c1 10121 -cneg 10451 ↾s cress 16052 0gc0g 16294 Mndcmnd 17487 GrpHom cghm 17850 SymGrpcsymg 17989 pmSgncpsgn 18101 mulGrpcmgp 18681 Ringcrg 18739 ℂfldccnfld 19940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-addf 10199 ax-mulf 10200 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-xor 1606 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-ot 4322 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-se 5218 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-isom 6050 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-2o 7722 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-div 10869 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-7 11268 df-8 11269 df-9 11270 df-n0 11477 df-xnn0 11548 df-z 11562 df-dec 11678 df-uz 11872 df-rp 12018 df-fz 12512 df-fzo 12652 df-seq 12988 df-exp 13047 df-hash 13304 df-word 13477 df-lsw 13478 df-concat 13479 df-s1 13480 df-substr 13481 df-splice 13482 df-reverse 13483 df-s2 13785 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-starv 16150 df-tset 16154 df-ple 16155 df-ds 16158 df-unif 16159 df-0g 16296 df-gsum 16297 df-mre 16440 df-mrc 16441 df-acs 16443 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-mhm 17528 df-submnd 17529 df-grp 17618 df-minusg 17619 df-subg 17784 df-ghm 17851 df-gim 17894 df-oppg 17968 df-symg 17990 df-pmtr 18054 df-psgn 18103 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-cring 18742 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-dvr 18875 df-drng 18943 df-cnfld 19941 |
This theorem is referenced by: psgnfzto1st 30156 |
Copyright terms: Public domain | W3C validator |