MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnghm2 Structured version   Visualization version   GIF version

Theorem psgnghm2 20141
Description: The sign is a homomorphism from the finite symmetric group to the numeric signs. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnghm2.s 𝑆 = (SymGrp‘𝐷)
psgnghm2.n 𝑁 = (pmSgn‘𝐷)
psgnghm2.u 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
Assertion
Ref Expression
psgnghm2 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))

Proof of Theorem psgnghm2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 psgnghm2.s . . 3 𝑆 = (SymGrp‘𝐷)
2 psgnghm2.n . . 3 𝑁 = (pmSgn‘𝐷)
3 eqid 2770 . . 3 (𝑆s dom 𝑁) = (𝑆s dom 𝑁)
4 psgnghm2.u . . 3 𝑈 = ((mulGrp‘ℂfld) ↾s {1, -1})
51, 2, 3, 4psgnghm 20140 . 2 (𝐷 ∈ Fin → 𝑁 ∈ ((𝑆s dom 𝑁) GrpHom 𝑈))
6 eqid 2770 . . . . . . . 8 (Base‘𝑆) = (Base‘𝑆)
71, 6sygbasnfpfi 18138 . . . . . . 7 ((𝐷 ∈ Fin ∧ 𝑥 ∈ (Base‘𝑆)) → dom (𝑥 ∖ I ) ∈ Fin)
87ralrimiva 3114 . . . . . 6 (𝐷 ∈ Fin → ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
9 rabid2 3266 . . . . . 6 ((Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} ↔ ∀𝑥 ∈ (Base‘𝑆)dom (𝑥 ∖ I ) ∈ Fin)
108, 9sylibr 224 . . . . 5 (𝐷 ∈ Fin → (Base‘𝑆) = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
11 eqid 2770 . . . . . . 7 {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
121, 6, 11, 2psgnfn 18127 . . . . . 6 𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
13 fndm 6130 . . . . . 6 (𝑁 Fn {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin} → dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin})
1412, 13ax-mp 5 . . . . 5 dom 𝑁 = {𝑥 ∈ (Base‘𝑆) ∣ dom (𝑥 ∖ I ) ∈ Fin}
1510, 14syl6eqr 2822 . . . 4 (𝐷 ∈ Fin → (Base‘𝑆) = dom 𝑁)
16 eqimss 3804 . . . 4 ((Base‘𝑆) = dom 𝑁 → (Base‘𝑆) ⊆ dom 𝑁)
17 fvex 6342 . . . . . 6 (SymGrp‘𝐷) ∈ V
181, 17eqeltri 2845 . . . . 5 𝑆 ∈ V
19 fvex 6342 . . . . . . 7 (pmSgn‘𝐷) ∈ V
202, 19eqeltri 2845 . . . . . 6 𝑁 ∈ V
2120dmex 7245 . . . . 5 dom 𝑁 ∈ V
223, 6ressid2 16134 . . . . 5 (((Base‘𝑆) ⊆ dom 𝑁𝑆 ∈ V ∧ dom 𝑁 ∈ V) → (𝑆s dom 𝑁) = 𝑆)
2318, 21, 22mp3an23 1563 . . . 4 ((Base‘𝑆) ⊆ dom 𝑁 → (𝑆s dom 𝑁) = 𝑆)
2415, 16, 233syl 18 . . 3 (𝐷 ∈ Fin → (𝑆s dom 𝑁) = 𝑆)
2524oveq1d 6807 . 2 (𝐷 ∈ Fin → ((𝑆s dom 𝑁) GrpHom 𝑈) = (𝑆 GrpHom 𝑈))
265, 25eleqtrd 2851 1 (𝐷 ∈ Fin → 𝑁 ∈ (𝑆 GrpHom 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1630  wcel 2144  wral 3060  {crab 3064  Vcvv 3349  cdif 3718  wss 3721  {cpr 4316   I cid 5156  dom cdm 5249   Fn wfn 6026  cfv 6031  (class class class)co 6792  Fincfn 8108  1c1 10138  -cneg 10468  Basecbs 16063  s cress 16064   GrpHom cghm 17864  SymGrpcsymg 18003  pmSgncpsgn 18115  mulGrpcmgp 18696  fldccnfld 19960
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-addf 10216  ax-mulf 10217
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-xor 1612  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-xnn0 11565  df-z 11579  df-dec 11695  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-word 13494  df-lsw 13495  df-concat 13496  df-s1 13497  df-substr 13498  df-splice 13499  df-reverse 13500  df-s2 13801  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-subg 17798  df-ghm 17865  df-gim 17908  df-oppg 17982  df-symg 18004  df-pmtr 18068  df-psgn 18117  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-cnfld 19961
This theorem is referenced by:  psgninv  20142  psgnco  20143  zrhpsgnmhm  20144  zrhpsgninv  20145  psgnevpmb  20147  psgnodpm  20148  zrhpsgnevpm  20151  zrhpsgnodpm  20152  evpmodpmf1o  20157  mdetralt  20631  psgnid  30181
  Copyright terms: Public domain W3C validator