MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfval Structured version   Visualization version   GIF version

Theorem psgnfval 18120
Description: Function definition of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfval.g 𝐺 = (SymGrp‘𝐷)
psgnfval.b 𝐵 = (Base‘𝐺)
psgnfval.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfval.t 𝑇 = ran (pmTrsp‘𝐷)
psgnfval.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfval 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Distinct variable groups:   𝑠,𝑝,𝑤,𝑥   𝐷,𝑠,𝑤,𝑥   𝑥,𝐹   𝑤,𝑇   𝐵,𝑝
Allowed substitution hints:   𝐵(𝑥,𝑤,𝑠)   𝐷(𝑝)   𝑇(𝑥,𝑠,𝑝)   𝐹(𝑤,𝑠,𝑝)   𝐺(𝑥,𝑤,𝑠,𝑝)   𝑁(𝑥,𝑤,𝑠,𝑝)

Proof of Theorem psgnfval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 psgnfval.n . 2 𝑁 = (pmSgn‘𝐷)
2 fveq2 6352 . . . . . . . . . 10 (𝑑 = 𝐷 → (SymGrp‘𝑑) = (SymGrp‘𝐷))
3 psgnfval.g . . . . . . . . . 10 𝐺 = (SymGrp‘𝐷)
42, 3syl6eqr 2812 . . . . . . . . 9 (𝑑 = 𝐷 → (SymGrp‘𝑑) = 𝐺)
54fveq2d 6356 . . . . . . . 8 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = (Base‘𝐺))
6 psgnfval.b . . . . . . . 8 𝐵 = (Base‘𝐺)
75, 6syl6eqr 2812 . . . . . . 7 (𝑑 = 𝐷 → (Base‘(SymGrp‘𝑑)) = 𝐵)
8 rabeq 3332 . . . . . . 7 ((Base‘(SymGrp‘𝑑)) = 𝐵 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
97, 8syl 17 . . . . . 6 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin})
10 psgnfval.f . . . . . 6 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
119, 10syl6eqr 2812 . . . . 5 (𝑑 = 𝐷 → {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} = 𝐹)
12 fveq2 6352 . . . . . . . . . 10 (𝑑 = 𝐷 → (pmTrsp‘𝑑) = (pmTrsp‘𝐷))
1312rneqd 5508 . . . . . . . . 9 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = ran (pmTrsp‘𝐷))
14 psgnfval.t . . . . . . . . 9 𝑇 = ran (pmTrsp‘𝐷)
1513, 14syl6eqr 2812 . . . . . . . 8 (𝑑 = 𝐷 → ran (pmTrsp‘𝑑) = 𝑇)
16 wrdeq 13513 . . . . . . . 8 (ran (pmTrsp‘𝑑) = 𝑇 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
1715, 16syl 17 . . . . . . 7 (𝑑 = 𝐷 → Word ran (pmTrsp‘𝑑) = Word 𝑇)
184oveq1d 6828 . . . . . . . . 9 (𝑑 = 𝐷 → ((SymGrp‘𝑑) Σg 𝑤) = (𝐺 Σg 𝑤))
1918eqeq2d 2770 . . . . . . . 8 (𝑑 = 𝐷 → (𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ↔ 𝑥 = (𝐺 Σg 𝑤)))
2019anbi1d 743 . . . . . . 7 (𝑑 = 𝐷 → ((𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ (𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2117, 20rexeqbidv 3292 . . . . . 6 (𝑑 = 𝐷 → (∃𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))) ↔ ∃𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2221iotabidv 6033 . . . . 5 (𝑑 = 𝐷 → (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) = (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
2311, 22mpteq12dv 4885 . . . 4 (𝑑 = 𝐷 → (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
24 df-psgn 18111 . . . 4 pmSgn = (𝑑 ∈ V ↦ (𝑥 ∈ {𝑝 ∈ (Base‘(SymGrp‘𝑑)) ∣ dom (𝑝 ∖ I ) ∈ Fin} ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝑑)(𝑥 = ((SymGrp‘𝑑) Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
25 fvex 6362 . . . . . . 7 (Base‘𝐺) ∈ V
266, 25eqeltri 2835 . . . . . 6 𝐵 ∈ V
2710, 26rabex2 4966 . . . . 5 𝐹 ∈ V
2827mptex 6650 . . . 4 (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) ∈ V
2923, 24, 28fvmpt 6444 . . 3 (𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
30 fvprc 6346 . . . 4 𝐷 ∈ V → (pmSgn‘𝐷) = ∅)
31 fvprc 6346 . . . . . . . . . . . . 13 𝐷 ∈ V → (SymGrp‘𝐷) = ∅)
323, 31syl5eq 2806 . . . . . . . . . . . 12 𝐷 ∈ V → 𝐺 = ∅)
3332fveq2d 6356 . . . . . . . . . . 11 𝐷 ∈ V → (Base‘𝐺) = (Base‘∅))
34 base0 16114 . . . . . . . . . . 11 ∅ = (Base‘∅)
3533, 34syl6eqr 2812 . . . . . . . . . 10 𝐷 ∈ V → (Base‘𝐺) = ∅)
366, 35syl5eq 2806 . . . . . . . . 9 𝐷 ∈ V → 𝐵 = ∅)
37 rabeq 3332 . . . . . . . . 9 (𝐵 = ∅ → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
3836, 37syl 17 . . . . . . . 8 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin})
39 rab0 4098 . . . . . . . 8 {𝑝 ∈ ∅ ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅
4038, 39syl6eq 2810 . . . . . . 7 𝐷 ∈ V → {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin} = ∅)
4110, 40syl5eq 2806 . . . . . 6 𝐷 ∈ V → 𝐹 = ∅)
4241mpteq1d 4890 . . . . 5 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
43 mpt0 6182 . . . . 5 (𝑥 ∈ ∅ ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅
4442, 43syl6eq 2810 . . . 4 𝐷 ∈ V → (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))) = ∅)
4530, 44eqtr4d 2797 . . 3 𝐷 ∈ V → (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤))))))
4629, 45pm2.61i 176 . 2 (pmSgn‘𝐷) = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
471, 46eqtri 2782 1 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word 𝑇(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 383   = wceq 1632  wcel 2139  wrex 3051  {crab 3054  Vcvv 3340  cdif 3712  c0 4058  cmpt 4881   I cid 5173  dom cdm 5266  ran crn 5267  cio 6010  cfv 6049  (class class class)co 6813  Fincfn 8121  1c1 10129  -cneg 10459  cexp 13054  chash 13311  Word cword 13477  Basecbs 16059   Σg cgsu 16303  SymGrpcsymg 17997  pmTrspcpmtr 18061  pmSgncpsgn 18109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-fzo 12660  df-hash 13312  df-word 13485  df-slot 16063  df-base 16065  df-psgn 18111
This theorem is referenced by:  psgnfn  18121  psgnval  18127  psgnfvalfi  18133
  Copyright terms: Public domain W3C validator