MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnfn Structured version   Visualization version   GIF version

Theorem psgnfn 18148
Description: Functionality and domain of the permutation sign function. (Contributed by Stefan O'Rear, 28-Aug-2015.)
Hypotheses
Ref Expression
psgnfn.g 𝐺 = (SymGrp‘𝐷)
psgnfn.b 𝐵 = (Base‘𝐺)
psgnfn.f 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
psgnfn.n 𝑁 = (pmSgn‘𝐷)
Assertion
Ref Expression
psgnfn 𝑁 Fn 𝐹
Distinct variable group:   𝐵,𝑝
Allowed substitution hints:   𝐷(𝑝)   𝐹(𝑝)   𝐺(𝑝)   𝑁(𝑝)

Proof of Theorem psgnfn
Dummy variables 𝑠 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 6022 . 2 (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))) ∈ V
2 psgnfn.g . . 3 𝐺 = (SymGrp‘𝐷)
3 psgnfn.b . . 3 𝐵 = (Base‘𝐺)
4 psgnfn.f . . 3 𝐹 = {𝑝𝐵 ∣ dom (𝑝 ∖ I ) ∈ Fin}
5 eqid 2774 . . 3 ran (pmTrsp‘𝐷) = ran (pmTrsp‘𝐷)
6 psgnfn.n . . 3 𝑁 = (pmSgn‘𝐷)
72, 3, 4, 5, 6psgnfval 18147 . 2 𝑁 = (𝑥𝐹 ↦ (℩𝑠𝑤 ∈ Word ran (pmTrsp‘𝐷)(𝑥 = (𝐺 Σg 𝑤) ∧ 𝑠 = (-1↑(♯‘𝑤)))))
81, 7fnmpti 6173 1 𝑁 Fn 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1634  wcel 2148  wrex 3065  {crab 3068  cdif 3726   I cid 5170  dom cdm 5263  ran crn 5264  cio 6003   Fn wfn 6037  cfv 6042  (class class class)co 6812  Fincfn 8130  1c1 10160  -cneg 10490  cexp 13089  chash 13343  Word cword 13509  Basecbs 16084   Σg cgsu 16329  SymGrpcsymg 18024  pmTrspcpmtr 18088  pmSgncpsgn 18136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1873  ax-4 1888  ax-5 1994  ax-6 2060  ax-7 2096  ax-8 2150  ax-9 2157  ax-10 2177  ax-11 2193  ax-12 2206  ax-13 2411  ax-ext 2754  ax-rep 4917  ax-sep 4928  ax-nul 4936  ax-pow 4988  ax-pr 5048  ax-un 7117  ax-cnex 10215  ax-resscn 10216  ax-1cn 10217  ax-icn 10218  ax-addcl 10219  ax-addrcl 10220  ax-mulcl 10221  ax-mulrcl 10222  ax-mulcom 10223  ax-addass 10224  ax-mulass 10225  ax-distr 10226  ax-i2m1 10227  ax-1ne0 10228  ax-1rid 10229  ax-rnegex 10230  ax-rrecex 10231  ax-cnre 10232  ax-pre-lttri 10233  ax-pre-lttrn 10234  ax-pre-ltadd 10235  ax-pre-mulgt0 10236
This theorem depends on definitions:  df-bi 198  df-an 384  df-or 864  df-3or 1099  df-3an 1100  df-tru 1637  df-ex 1856  df-nf 1861  df-sb 2053  df-eu 2625  df-mo 2626  df-clab 2761  df-cleq 2767  df-clel 2770  df-nfc 2905  df-ne 2947  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3357  df-sbc 3594  df-csb 3689  df-dif 3732  df-un 3734  df-in 3736  df-ss 3743  df-pss 3745  df-nul 4074  df-if 4236  df-pw 4309  df-sn 4327  df-pr 4329  df-tp 4331  df-op 4333  df-uni 4586  df-int 4623  df-iun 4667  df-br 4798  df-opab 4860  df-mpt 4877  df-tr 4900  df-id 5171  df-eprel 5176  df-po 5184  df-so 5185  df-fr 5222  df-we 5224  df-xp 5269  df-rel 5270  df-cnv 5271  df-co 5272  df-dm 5273  df-rn 5274  df-res 5275  df-ima 5276  df-pred 5834  df-ord 5880  df-on 5881  df-lim 5882  df-suc 5883  df-iota 6005  df-fun 6044  df-fn 6045  df-f 6046  df-f1 6047  df-fo 6048  df-f1o 6049  df-fv 6050  df-riota 6773  df-ov 6815  df-oprab 6816  df-mpt2 6817  df-om 7234  df-1st 7336  df-2nd 7337  df-wrecs 7580  df-recs 7642  df-rdg 7680  df-1o 7734  df-er 7917  df-en 8131  df-dom 8132  df-sdom 8133  df-fin 8134  df-card 8986  df-pnf 10299  df-mnf 10300  df-xr 10301  df-ltxr 10302  df-le 10303  df-sub 10491  df-neg 10492  df-nn 11244  df-n0 11517  df-z 11602  df-uz 11911  df-fz 12556  df-fzo 12696  df-hash 13344  df-word 13517  df-slot 16088  df-base 16090  df-psgn 18138
This theorem is referenced by:  psgndmsubg  18149  psgneldm  18150  psgneldm2  18151  psgnval  18154  psgnghm  20161  psgnghm2  20162  cofipsgn  20174  zrhcofipsgnOLD  20175  m1detdiag  20641  psgndmfi  30203
  Copyright terms: Public domain W3C validator