MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pserdvlem1 Structured version   Visualization version   GIF version

Theorem pserdvlem1 24401
Description: Lemma for pserdv 24403. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
pserf.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
pserf.f 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
pserf.a (𝜑𝐴:ℕ0⟶ℂ)
pserf.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
psercn.s 𝑆 = (abs “ (0[,)𝑅))
psercn.m 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
Assertion
Ref Expression
pserdvlem1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Distinct variable groups:   𝑗,𝑎,𝑛,𝑟,𝑥,𝑦,𝐴   𝑗,𝑀,𝑦   𝑗,𝐺,𝑟,𝑦   𝑆,𝑎,𝑗,𝑦   𝐹,𝑎   𝜑,𝑎,𝑗,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑦,𝑗,𝑛,𝑟,𝑎)   𝑆(𝑥,𝑛,𝑟)   𝐹(𝑥,𝑦,𝑗,𝑛,𝑟)   𝐺(𝑥,𝑛,𝑎)   𝑀(𝑥,𝑛,𝑟,𝑎)

Proof of Theorem pserdvlem1
StepHypRef Expression
1 psercn.s . . . . . . . . 9 𝑆 = (abs “ (0[,)𝑅))
2 cnvimass 5625 . . . . . . . . . 10 (abs “ (0[,)𝑅)) ⊆ dom abs
3 absf 14285 . . . . . . . . . . 11 abs:ℂ⟶ℝ
43fdmi 6194 . . . . . . . . . 10 dom abs = ℂ
52, 4sseqtri 3786 . . . . . . . . 9 (abs “ (0[,)𝑅)) ⊆ ℂ
61, 5eqsstri 3784 . . . . . . . 8 𝑆 ⊆ ℂ
76a1i 11 . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
87sselda 3752 . . . . . 6 ((𝜑𝑎𝑆) → 𝑎 ∈ ℂ)
98abscld 14383 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) ∈ ℝ)
10 pserf.g . . . . . . . 8 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
11 pserf.f . . . . . . . 8 𝐹 = (𝑦𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺𝑦)‘𝑗))
12 pserf.a . . . . . . . 8 (𝜑𝐴:ℕ0⟶ℂ)
13 pserf.r . . . . . . . 8 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
14 psercn.m . . . . . . . 8 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1))
1510, 11, 12, 13, 1, 14psercnlem1 24399 . . . . . . 7 ((𝜑𝑎𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀𝑀 < 𝑅))
1615simp1d 1136 . . . . . 6 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ+)
1716rpred 12075 . . . . 5 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ)
189, 17readdcld 10275 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ)
19 0red 10247 . . . . 5 ((𝜑𝑎𝑆) → 0 ∈ ℝ)
208absge0d 14391 . . . . 5 ((𝜑𝑎𝑆) → 0 ≤ (abs‘𝑎))
219, 16ltaddrpd 12108 . . . . 5 ((𝜑𝑎𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀))
2219, 9, 18, 20, 21lelttrd 10401 . . . 4 ((𝜑𝑎𝑆) → 0 < ((abs‘𝑎) + 𝑀))
2318, 22elrpd 12072 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+)
2423rphalfcld 12087 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+)
2515simp2d 1137 . . 3 ((𝜑𝑎𝑆) → (abs‘𝑎) < 𝑀)
26 avglt1 11477 . . . 4 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
279, 17, 26syl2anc 573 . . 3 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)))
2825, 27mpbid 222 . 2 ((𝜑𝑎𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))
2918rehalfcld 11486 . . . 4 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ)
3029rexrd 10295 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*)
3117rexrd 10295 . . 3 ((𝜑𝑎𝑆) → 𝑀 ∈ ℝ*)
32 iccssxr 12461 . . . . 5 (0[,]+∞) ⊆ ℝ*
3310, 12, 13radcnvcl 24391 . . . . 5 (𝜑𝑅 ∈ (0[,]+∞))
3432, 33sseldi 3750 . . . 4 (𝜑𝑅 ∈ ℝ*)
3534adantr 466 . . 3 ((𝜑𝑎𝑆) → 𝑅 ∈ ℝ*)
36 avglt2 11478 . . . . 5 (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
379, 17, 36syl2anc 573 . . . 4 ((𝜑𝑎𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀))
3825, 37mpbid 222 . . 3 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀)
3915simp3d 1138 . . 3 ((𝜑𝑎𝑆) → 𝑀 < 𝑅)
4030, 31, 35, 38, 39xrlttrd 12195 . 2 ((𝜑𝑎𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅)
4124, 28, 403jca 1122 1 ((𝜑𝑎𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  wss 3723  ifcif 4226   class class class wbr 4787  cmpt 4864  ccnv 5249  dom cdm 5250  cima 5253  wf 6026  cfv 6030  (class class class)co 6796  supcsup 8506  cc 10140  cr 10141  0cc0 10142  1c1 10143   + caddc 10145   · cmul 10147  +∞cpnf 10277  *cxr 10279   < clt 10280   / cdiv 10890  2c2 11276  0cn0 11499  +crp 12035  [,)cico 12382  [,]cicc 12383  seqcseq 13008  cexp 13067  abscabs 14182  cli 14423  Σcsu 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-ico 12386  df-icc 12387  df-fz 12534  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427
This theorem is referenced by:  pserdvlem2  24402  pserdv  24403
  Copyright terms: Public domain W3C validator