![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pserdvlem1 | Structured version Visualization version GIF version |
Description: Lemma for pserdv 24403. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
pserf.g | ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) |
pserf.f | ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) |
pserf.a | ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
pserf.r | ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) |
psercn.s | ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) |
psercn.m | ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) |
Ref | Expression |
---|---|
pserdvlem1 | ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | psercn.s | . . . . . . . . 9 ⊢ 𝑆 = (◡abs “ (0[,)𝑅)) | |
2 | cnvimass 5625 | . . . . . . . . . 10 ⊢ (◡abs “ (0[,)𝑅)) ⊆ dom abs | |
3 | absf 14285 | . . . . . . . . . . 11 ⊢ abs:ℂ⟶ℝ | |
4 | 3 | fdmi 6194 | . . . . . . . . . 10 ⊢ dom abs = ℂ |
5 | 2, 4 | sseqtri 3786 | . . . . . . . . 9 ⊢ (◡abs “ (0[,)𝑅)) ⊆ ℂ |
6 | 1, 5 | eqsstri 3784 | . . . . . . . 8 ⊢ 𝑆 ⊆ ℂ |
7 | 6 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 7 | sselda 3752 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑎 ∈ ℂ) |
9 | 8 | abscld 14383 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) ∈ ℝ) |
10 | pserf.g | . . . . . . . 8 ⊢ 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴‘𝑛) · (𝑥↑𝑛)))) | |
11 | pserf.f | . . . . . . . 8 ⊢ 𝐹 = (𝑦 ∈ 𝑆 ↦ Σ𝑗 ∈ ℕ0 ((𝐺‘𝑦)‘𝑗)) | |
12 | pserf.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | |
13 | pserf.r | . . . . . . . 8 ⊢ 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺‘𝑟)) ∈ dom ⇝ }, ℝ*, < ) | |
14 | psercn.m | . . . . . . . 8 ⊢ 𝑀 = if(𝑅 ∈ ℝ, (((abs‘𝑎) + 𝑅) / 2), ((abs‘𝑎) + 1)) | |
15 | 10, 11, 12, 13, 1, 14 | psercnlem1 24399 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (𝑀 ∈ ℝ+ ∧ (abs‘𝑎) < 𝑀 ∧ 𝑀 < 𝑅)) |
16 | 15 | simp1d 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ+) |
17 | 16 | rpred 12075 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ) |
18 | 9, 17 | readdcld 10275 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ) |
19 | 0red 10247 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ∈ ℝ) | |
20 | 8 | absge0d 14391 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 ≤ (abs‘𝑎)) |
21 | 9, 16 | ltaddrpd 12108 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < ((abs‘𝑎) + 𝑀)) |
22 | 19, 9, 18, 20, 21 | lelttrd 10401 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 0 < ((abs‘𝑎) + 𝑀)) |
23 | 18, 22 | elrpd 12072 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) + 𝑀) ∈ ℝ+) |
24 | 23 | rphalfcld 12087 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+) |
25 | 15 | simp2d 1137 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < 𝑀) |
26 | avglt1 11477 | . . . 4 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) | |
27 | 9, 17, 26 | syl2anc 573 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2))) |
28 | 25, 27 | mpbid 222 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2)) |
29 | 18 | rehalfcld 11486 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ) |
30 | 29 | rexrd 10295 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) ∈ ℝ*) |
31 | 17 | rexrd 10295 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 ∈ ℝ*) |
32 | iccssxr 12461 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
33 | 10, 12, 13 | radcnvcl 24391 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (0[,]+∞)) |
34 | 32, 33 | sseldi 3750 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ ℝ*) |
35 | 34 | adantr 466 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑅 ∈ ℝ*) |
36 | avglt2 11478 | . . . . 5 ⊢ (((abs‘𝑎) ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) | |
37 | 9, 17, 36 | syl2anc 573 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((abs‘𝑎) < 𝑀 ↔ (((abs‘𝑎) + 𝑀) / 2) < 𝑀)) |
38 | 25, 37 | mpbid 222 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑀) |
39 | 15 | simp3d 1138 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → 𝑀 < 𝑅) |
40 | 30, 31, 35, 38, 39 | xrlttrd 12195 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → (((abs‘𝑎) + 𝑀) / 2) < 𝑅) |
41 | 24, 28, 40 | 3jca 1122 | 1 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑆) → ((((abs‘𝑎) + 𝑀) / 2) ∈ ℝ+ ∧ (abs‘𝑎) < (((abs‘𝑎) + 𝑀) / 2) ∧ (((abs‘𝑎) + 𝑀) / 2) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 ∧ w3a 1071 = wceq 1631 ∈ wcel 2145 {crab 3065 ⊆ wss 3723 ifcif 4226 class class class wbr 4787 ↦ cmpt 4864 ◡ccnv 5249 dom cdm 5250 “ cima 5253 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 supcsup 8506 ℂcc 10140 ℝcr 10141 0cc0 10142 1c1 10143 + caddc 10145 · cmul 10147 +∞cpnf 10277 ℝ*cxr 10279 < clt 10280 / cdiv 10890 2c2 11276 ℕ0cn0 11499 ℝ+crp 12035 [,)cico 12382 [,]cicc 12383 seqcseq 13008 ↑cexp 13067 abscabs 14182 ⇝ cli 14423 Σcsu 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-ico 12386 df-icc 12387 df-fz 12534 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 |
This theorem is referenced by: pserdvlem2 24402 pserdv 24403 |
Copyright terms: Public domain | W3C validator |