MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prub Structured version   Visualization version   GIF version

Theorem prub 10028
Description: A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.)
Assertion
Ref Expression
prub (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))

Proof of Theorem prub
StepHypRef Expression
1 eleq1 2827 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
21biimpcd 239 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
32adantl 473 . . . . 5 ((𝐴P𝐵𝐴) → (𝐵 = 𝐶𝐶𝐴))
4 prcdnq 10027 . . . . 5 ((𝐴P𝐵𝐴) → (𝐶 <Q 𝐵𝐶𝐴))
53, 4jaod 394 . . . 4 ((𝐴P𝐵𝐴) → ((𝐵 = 𝐶𝐶 <Q 𝐵) → 𝐶𝐴))
65con3d 148 . . 3 ((𝐴P𝐵𝐴) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
76adantr 472 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴 → ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
8 elprnq 10025 . . 3 ((𝐴P𝐵𝐴) → 𝐵Q)
9 ltsonq 10003 . . . 4 <Q Or Q
10 sotric 5213 . . . 4 (( <Q Or Q ∧ (𝐵Q𝐶Q)) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
119, 10mpan 708 . . 3 ((𝐵Q𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
128, 11sylan 489 . 2 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (𝐵 <Q 𝐶 ↔ ¬ (𝐵 = 𝐶𝐶 <Q 𝐵)))
137, 12sylibrd 249 1 (((𝐴P𝐵𝐴) ∧ 𝐶Q) → (¬ 𝐶𝐴𝐵 <Q 𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383   = wceq 1632  wcel 2139   class class class wbr 4804   Or wor 5186  Qcnq 9886   <Q cltq 9892  Pcnp 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-oadd 7734  df-omul 7735  df-er 7913  df-ni 9906  df-mi 9908  df-lti 9909  df-ltpq 9944  df-enq 9945  df-nq 9946  df-ltnq 9952  df-np 10015
This theorem is referenced by:  genpnnp  10039  psslinpr  10065  ltexprlem6  10075  ltexprlem7  10076  prlem936  10081  reclem4pr  10084
  Copyright terms: Public domain W3C validator