![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem16 | Structured version Visualization version GIF version |
Description: Lemma for prtex 34484, prter2 34485 and prter3 34486. (Contributed by Rodolfo Medina, 14-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem13.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtlem16 | ⊢ dom ∼ = ∪ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3234 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | 1 | eldm 5353 | . . 3 ⊢ (𝑧 ∈ dom ∼ ↔ ∃𝑤 𝑧 ∼ 𝑤) |
3 | prtlem13.1 | . . . . 5 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
4 | 3 | prtlem13 34472 | . . . 4 ⊢ (𝑧 ∼ 𝑤 ↔ ∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
5 | 4 | exbii 1814 | . . 3 ⊢ (∃𝑤 𝑧 ∼ 𝑤 ↔ ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
6 | elunii 4473 | . . . . . . . 8 ⊢ ((𝑧 ∈ 𝑣 ∧ 𝑣 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴) | |
7 | 6 | ancoms 468 | . . . . . . 7 ⊢ ((𝑣 ∈ 𝐴 ∧ 𝑧 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
8 | 7 | adantrr 753 | . . . . . 6 ⊢ ((𝑣 ∈ 𝐴 ∧ (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) → 𝑧 ∈ ∪ 𝐴) |
9 | 8 | rexlimiva 3057 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
10 | 9 | exlimiv 1898 | . . . 4 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) → 𝑧 ∈ ∪ 𝐴) |
11 | eluni2 4472 | . . . . 5 ⊢ (𝑧 ∈ ∪ 𝐴 ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣) | |
12 | eleq1 2718 | . . . . . . . . 9 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝑣 ↔ 𝑧 ∈ 𝑣)) | |
13 | 12 | anbi2d 740 | . . . . . . . 8 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣))) |
14 | pm4.24 676 | . . . . . . . 8 ⊢ (𝑧 ∈ 𝑣 ↔ (𝑧 ∈ 𝑣 ∧ 𝑧 ∈ 𝑣)) | |
15 | 13, 14 | syl6bbr 278 | . . . . . . 7 ⊢ (𝑤 = 𝑧 → ((𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ 𝑣)) |
16 | 15 | rexbidv 3081 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ ∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣)) |
17 | 1, 16 | spcev 3331 | . . . . 5 ⊢ (∃𝑣 ∈ 𝐴 𝑧 ∈ 𝑣 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
18 | 11, 17 | sylbi 207 | . . . 4 ⊢ (𝑧 ∈ ∪ 𝐴 → ∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣)) |
19 | 10, 18 | impbii 199 | . . 3 ⊢ (∃𝑤∃𝑣 ∈ 𝐴 (𝑧 ∈ 𝑣 ∧ 𝑤 ∈ 𝑣) ↔ 𝑧 ∈ ∪ 𝐴) |
20 | 2, 5, 19 | 3bitri 286 | . 2 ⊢ (𝑧 ∈ dom ∼ ↔ 𝑧 ∈ ∪ 𝐴) |
21 | 20 | eqriv 2648 | 1 ⊢ dom ∼ = ∪ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 ∪ cuni 4468 class class class wbr 4685 {copab 4745 dom cdm 5143 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-dm 5153 |
This theorem is referenced by: prtlem400 34474 prter1 34483 |
Copyright terms: Public domain | W3C validator |