![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtlem11 | Structured version Visualization version GIF version |
Description: Lemma for prter2 34485. (Contributed by Rodolfo Medina, 12-Oct-2010.) |
Ref | Expression |
---|---|
prtlem11 | ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | risset 3091 | . . . 4 ⊢ (𝐶 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑥 = 𝐶) | |
2 | r19.41v 3118 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 = 𝐶 ∧ 𝐵 = [𝐶] ∼ ) ↔ (∃𝑥 ∈ 𝐴 𝑥 = 𝐶 ∧ 𝐵 = [𝐶] ∼ )) | |
3 | eceq1 7825 | . . . . . . 7 ⊢ (𝑥 = 𝐶 → [𝑥] ∼ = [𝐶] ∼ ) | |
4 | eqtr3 2672 | . . . . . . . 8 ⊢ (([𝑥] ∼ = [𝐶] ∼ ∧ 𝐵 = [𝐶] ∼ ) → [𝑥] ∼ = 𝐵) | |
5 | 4 | eqcomd 2657 | . . . . . . 7 ⊢ (([𝑥] ∼ = [𝐶] ∼ ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 = [𝑥] ∼ ) |
6 | 3, 5 | sylan 487 | . . . . . 6 ⊢ ((𝑥 = 𝐶 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 = [𝑥] ∼ ) |
7 | 6 | reximi 3040 | . . . . 5 ⊢ (∃𝑥 ∈ 𝐴 (𝑥 = 𝐶 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
8 | 2, 7 | sylbir 225 | . . . 4 ⊢ ((∃𝑥 ∈ 𝐴 𝑥 = 𝐶 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
9 | 1, 8 | sylanb 488 | . . 3 ⊢ ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ ) |
10 | elqsg 7841 | . . 3 ⊢ (𝐵 ∈ 𝐷 → (𝐵 ∈ (𝐴 / ∼ ) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥] ∼ )) | |
11 | 9, 10 | syl5ibr 236 | . 2 ⊢ (𝐵 ∈ 𝐷 → ((𝐶 ∈ 𝐴 ∧ 𝐵 = [𝐶] ∼ ) → 𝐵 ∈ (𝐴 / ∼ ))) |
12 | 11 | expd 451 | 1 ⊢ (𝐵 ∈ 𝐷 → (𝐶 ∈ 𝐴 → (𝐵 = [𝐶] ∼ → 𝐵 ∈ (𝐴 / ∼ )))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 [cec 7785 / cqs 7786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-ec 7789 df-qs 7793 |
This theorem is referenced by: prter2 34485 |
Copyright terms: Public domain | W3C validator |