![]() |
Mathbox for Rodolfo Medina |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prtex | Structured version Visualization version GIF version |
Description: The equivalence relation generated by a partition is a set if and only if the partition itself is a set. (Contributed by Rodolfo Medina, 15-Oct-2010.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
prtlem18.1 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} |
Ref | Expression |
---|---|
prtex | ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prtlem18.1 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ∃𝑢 ∈ 𝐴 (𝑥 ∈ 𝑢 ∧ 𝑦 ∈ 𝑢)} | |
2 | 1 | prter1 34668 | . . 3 ⊢ (Prt 𝐴 → ∼ Er ∪ 𝐴) |
3 | erexb 7936 | . . 3 ⊢ ( ∼ Er ∪ 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ ∪ 𝐴 ∈ V)) |
5 | uniexb 7138 | . 2 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
6 | 4, 5 | syl6bbr 278 | 1 ⊢ (Prt 𝐴 → ( ∼ ∈ V ↔ 𝐴 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 Vcvv 3340 ∪ cuni 4588 {copab 4864 Er wer 7908 Prt wprt 34660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-er 7911 df-prt 34661 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |