![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prsssdm | Structured version Visualization version GIF version |
Description: Domain of a subpreset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
Ref | Expression |
---|---|
ordtNEW.b | ⊢ 𝐵 = (Base‘𝐾) |
ordtNEW.l | ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) |
Ref | Expression |
---|---|
prsssdm | ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtNEW.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | ordtNEW.l | . . . 4 ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) | |
3 | 1, 2 | prsss 30292 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
4 | 3 | dmeqd 5481 | . 2 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴))) |
5 | 1 | ressprs 29985 | . . . 4 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Preset ) |
6 | eqid 2760 | . . . . 5 ⊢ (Base‘(𝐾 ↾s 𝐴)) = (Base‘(𝐾 ↾s 𝐴)) | |
7 | eqid 2760 | . . . . 5 ⊢ ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) | |
8 | 6, 7 | prsdm 30290 | . . . 4 ⊢ ((𝐾 ↾s 𝐴) ∈ Preset → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
9 | 5, 8 | syl 17 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) = (Base‘(𝐾 ↾s 𝐴))) |
10 | eqid 2760 | . . . . . . . . 9 ⊢ (𝐾 ↾s 𝐴) = (𝐾 ↾s 𝐴) | |
11 | 10, 1 | ressbas2 16153 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
12 | fvex 6363 | . . . . . . . 8 ⊢ (Base‘(𝐾 ↾s 𝐴)) ∈ V | |
13 | 11, 12 | syl6eqel 2847 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) |
14 | eqid 2760 | . . . . . . . 8 ⊢ (le‘𝐾) = (le‘𝐾) | |
15 | 10, 14 | ressle 16281 | . . . . . . 7 ⊢ (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
16 | 13, 15 | syl 17 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
17 | 16 | adantl 473 | . . . . 5 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (le‘𝐾) = (le‘(𝐾 ↾s 𝐴))) |
18 | 11 | adantl 473 | . . . . . 6 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘(𝐾 ↾s 𝐴))) |
19 | 18 | sqxpeqd 5298 | . . . . 5 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴)))) |
20 | 17, 19 | ineq12d 3958 | . . . 4 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
21 | 20 | dmeqd 5481 | . . 3 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾 ↾s 𝐴)) ∩ ((Base‘(𝐾 ↾s 𝐴)) × (Base‘(𝐾 ↾s 𝐴))))) |
22 | 9, 21, 18 | 3eqtr4d 2804 | . 2 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴) |
23 | 4, 22 | eqtrd 2794 | 1 ⊢ ((𝐾 ∈ Preset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 × cxp 5264 dom cdm 5266 ‘cfv 6049 (class class class)co 6814 Basecbs 16079 ↾s cress 16080 lecple 16170 Preset cpreset 17147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-dec 11706 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-ple 16183 df-preset 17149 |
This theorem is referenced by: ordtrest2NEWlem 30298 ordtrest2NEW 30299 |
Copyright terms: Public domain | W3C validator |