Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prsssdm Structured version   Visualization version   GIF version

Theorem prsssdm 30293
Description: Domain of a subpreset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.)
Hypotheses
Ref Expression
ordtNEW.b 𝐵 = (Base‘𝐾)
ordtNEW.l = ((le‘𝐾) ∩ (𝐵 × 𝐵))
Assertion
Ref Expression
prsssdm ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)

Proof of Theorem prsssdm
StepHypRef Expression
1 ordtNEW.b . . . 4 𝐵 = (Base‘𝐾)
2 ordtNEW.l . . . 4 = ((le‘𝐾) ∩ (𝐵 × 𝐵))
31, 2prsss 30292 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ( ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴)))
43dmeqd 5481 . 2 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = dom ((le‘𝐾) ∩ (𝐴 × 𝐴)))
51ressprs 29985 . . . 4 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝐾s 𝐴) ∈ Preset )
6 eqid 2760 . . . . 5 (Base‘(𝐾s 𝐴)) = (Base‘(𝐾s 𝐴))
7 eqid 2760 . . . . 5 ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
86, 7prsdm 30290 . . . 4 ((𝐾s 𝐴) ∈ Preset → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
95, 8syl 17 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))) = (Base‘(𝐾s 𝐴)))
10 eqid 2760 . . . . . . . . 9 (𝐾s 𝐴) = (𝐾s 𝐴)
1110, 1ressbas2 16153 . . . . . . . 8 (𝐴𝐵𝐴 = (Base‘(𝐾s 𝐴)))
12 fvex 6363 . . . . . . . 8 (Base‘(𝐾s 𝐴)) ∈ V
1311, 12syl6eqel 2847 . . . . . . 7 (𝐴𝐵𝐴 ∈ V)
14 eqid 2760 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
1510, 14ressle 16281 . . . . . . 7 (𝐴 ∈ V → (le‘𝐾) = (le‘(𝐾s 𝐴)))
1613, 15syl 17 . . . . . 6 (𝐴𝐵 → (le‘𝐾) = (le‘(𝐾s 𝐴)))
1716adantl 473 . . . . 5 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (le‘𝐾) = (le‘(𝐾s 𝐴)))
1811adantl 473 . . . . . 6 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → 𝐴 = (Base‘(𝐾s 𝐴)))
1918sqxpeqd 5298 . . . . 5 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → (𝐴 × 𝐴) = ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴))))
2017, 19ineq12d 3958 . . . 4 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → ((le‘𝐾) ∩ (𝐴 × 𝐴)) = ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
2120dmeqd 5481 . . 3 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = dom ((le‘(𝐾s 𝐴)) ∩ ((Base‘(𝐾s 𝐴)) × (Base‘(𝐾s 𝐴)))))
229, 21, 183eqtr4d 2804 . 2 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ((le‘𝐾) ∩ (𝐴 × 𝐴)) = 𝐴)
234, 22eqtrd 2794 1 ((𝐾 ∈ Preset ∧ 𝐴𝐵) → dom ( ∩ (𝐴 × 𝐴)) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  Vcvv 3340  cin 3714  wss 3715   × cxp 5264  dom cdm 5266  cfv 6049  (class class class)co 6814  Basecbs 16079  s cress 16080  lecple 16170   Preset cpreset 17147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-dec 11706  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-ple 16183  df-preset 17149
This theorem is referenced by:  ordtrest2NEWlem  30298  ordtrest2NEW  30299
  Copyright terms: Public domain W3C validator