![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prssi | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. (Contributed by NM, 16-Jan-2015.) |
Ref | Expression |
---|---|
prssi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prssg 4495 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
2 | 1 | ibi 256 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ⊆ wss 3715 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-un 3720 df-in 3722 df-ss 3729 df-sn 4322 df-pr 4324 |
This theorem is referenced by: prssd 4499 tpssi 4514 fr2nr 5244 f1prex 6702 fveqf1o 6720 fr3nr 7144 ordunel 7192 1sdom 8328 en2eqpr 9020 en2eleq 9021 r0weon 9025 dfac2b 9143 dfac2OLD 9145 wuncval2 9761 tskpr 9784 m1expcl2 13076 m1expcl 13077 wrdlen2i 13887 gcdcllem3 15425 lcmfpr 15542 1idssfct 15595 mreincl 16461 mrcun 16484 acsfn2 16525 joinval2 17210 meetval2 17224 ipole 17359 pmtrprfv 18073 pmtrprfv3 18074 symggen 18090 pmtr3ncomlem1 18093 pmtr3ncom 18095 psgnunilem1 18113 subrgin 19005 lssincl 19167 lspprcl 19180 lsptpcl 19181 lspprid1 19199 lspvadd 19298 lsppratlem2 19350 lsppratlem4 19352 cnmsgnbas 20126 cnmsgngrp 20127 psgninv 20130 zrhpsgnmhm 20132 mdetralt 20616 mdetunilem7 20626 unopn 20910 pptbas 21014 incld 21049 indiscld 21097 leordtval2 21218 isconn2 21419 xpsdsval 22387 ovolioo 23536 i1f1 23656 itgioo 23781 aannenlem2 24283 wilthlem2 24994 perfectlem2 25154 upgrbi 26187 umgrbi 26195 frgr3vlem2 27428 4cycl2v2nb 27443 sshjval3 28522 pr01ssre 29879 psgnid 30156 pmtrto1cl 30158 mdetpmtr1 30198 mdetpmtr12 30200 esumsnf 30435 prsiga 30503 difelsiga 30505 inelpisys 30526 measssd 30587 carsgsigalem 30686 carsgclctun 30692 pmeasmono 30695 eulerpartlemgs2 30751 eulerpartlemn 30752 probun 30790 signswch 30947 signsvfn 30968 signlem0 30973 breprexpnat 31021 kur14lem1 31495 fprb 31976 ssoninhaus 32753 poimirlem15 33737 inidl 34142 pmapmeet 35562 diameetN 36847 dihmeetcN 37093 dihmeet 37134 dvh4dimlem 37234 dvhdimlem 37235 dvh4dimN 37238 dvh3dim3N 37240 lcfrlem23 37356 lcfrlem25 37358 lcfrlem35 37368 mapdindp2 37512 lspindp5 37561 brfvrcld 38485 corclrcl 38501 corcltrcl 38533 ibliooicc 40690 fourierdlem51 40877 fourierdlem64 40890 fourierdlem102 40928 fourierdlem114 40940 sge0sn 41099 ovnsubadd2lem 41365 perfectALTVlem2 42141 nnsum3primesgbe 42190 sprvalpw 42240 mapprop 42634 zlmodzxzel 42643 zlmodzxzldeplem1 42799 onsetreclem2 42962 |
Copyright terms: Public domain | W3C validator |