![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prss | Structured version Visualization version GIF version |
Description: A pair of elements of a class is a subset of the class. Theorem 7.5 of [Quine] p. 49. (Contributed by NM, 30-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
Ref | Expression |
---|---|
prss.1 | ⊢ 𝐴 ∈ V |
prss.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
prss | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prss.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | prss.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | prssg 4382 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶)) | |
4 | 1, 2, 3 | mp2an 708 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ↔ {𝐴, 𝐵} ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 {cpr 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-in 3614 df-ss 3621 df-sn 4211 df-pr 4213 |
This theorem is referenced by: tpss 4400 uniintsn 4546 pwssun 5049 xpsspw 5266 dffv2 6310 fpr2g 6516 fiint 8278 wunex2 9598 hashfun 13262 fun2dmnop0 13314 prdsle 16169 prdsless 16170 prdsleval 16184 pwsle 16199 acsfn2 16371 joinfval 17048 joindmss 17054 meetfval 17062 meetdmss 17068 clatl 17163 ipoval 17201 ipolerval 17203 eqgfval 17689 eqgval 17690 gaorb 17786 pmtrrn2 17926 efgcpbllema 18213 frgpuplem 18231 drngnidl 19277 drnglpir 19301 isnzr2hash 19312 ltbval 19519 ltbwe 19520 opsrle 19523 opsrtoslem1 19532 thlle 20089 isphtpc 22840 axlowdimlem4 25870 structgrssvtx 25958 structgrssiedg 25959 structgrssvtxlemOLD 25960 structgrssvtxOLD 25961 structgrssiedgOLD 25962 umgredg 26078 wlk1walk 26591 wlkonl1iedg 26617 wlkdlem2 26636 3wlkdlem6 27143 frcond2 27247 frcond3 27249 nfrgr2v 27252 frgr3vlem1 27253 frgr3vlem2 27254 2pthfrgrrn 27262 frgrncvvdeqlem2 27280 shincli 28349 chincli 28447 coinfliprv 30672 altxpsspw 32209 fourierdlem103 40744 fourierdlem104 40745 nnsum3primes4 42001 |
Copyright terms: Public domain | W3C validator |