![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prprc2 | Structured version Visualization version GIF version |
Description: A proper class vanishes in an unordered pair. (Contributed by NM, 22-Mar-2006.) |
Ref | Expression |
---|---|
prprc2 | ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 4411 | . 2 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | prprc1 4444 | . 2 ⊢ (¬ 𝐵 ∈ V → {𝐵, 𝐴} = {𝐴}) | |
3 | 1, 2 | syl5eq 2806 | 1 ⊢ (¬ 𝐵 ∈ V → {𝐴, 𝐵} = {𝐴}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1632 ∈ wcel 2139 Vcvv 3340 {csn 4321 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-dif 3718 df-un 3720 df-nul 4059 df-sn 4322 df-pr 4324 |
This theorem is referenced by: tpprceq3 4480 elpreqprlem 4546 prex 5058 indislem 21006 1to2vfriswmgr 27433 indispconn 31523 elsprel 42235 |
Copyright terms: Public domain | W3C validator |