Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proththd Structured version   Visualization version   GIF version

Theorem proththd 42041
Description: Proth's theorem (1878). If P is a Proth number, i.e. a number of the form k2^n+1 with k less than 2^n, and if there exists an integer x for which x^((P-1)/2) is -1 modulo P, then P is prime. Such a prime is called a Proth prime. Like Pocklington's theorem (see pockthg 15812), Proth's theorem allows for a convenient method for verifying large primes. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
proththd.n (𝜑𝑁 ∈ ℕ)
proththd.k (𝜑𝐾 ∈ ℕ)
proththd.p (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
proththd.l (𝜑𝐾 < (2↑𝑁))
proththd.x (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
Assertion
Ref Expression
proththd (𝜑𝑃 ∈ ℙ)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝜑,𝑥
Allowed substitution hint:   𝐾(𝑥)

Proof of Theorem proththd
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 2nn 11377 . . . 4 2 ∈ ℕ
21a1i 11 . . 3 (𝜑 → 2 ∈ ℕ)
3 proththd.n . . . 4 (𝜑𝑁 ∈ ℕ)
43nnnn0d 11543 . . 3 (𝜑𝑁 ∈ ℕ0)
52, 4nnexpcld 13224 . 2 (𝜑 → (2↑𝑁) ∈ ℕ)
6 proththd.k . 2 (𝜑𝐾 ∈ ℕ)
7 proththd.l . 2 (𝜑𝐾 < (2↑𝑁))
8 proththd.p . . 3 (𝜑𝑃 = ((𝐾 · (2↑𝑁)) + 1))
96nncnd 11228 . . . . 5 (𝜑𝐾 ∈ ℂ)
105nncnd 11228 . . . . 5 (𝜑 → (2↑𝑁) ∈ ℂ)
119, 10mulcomd 10253 . . . 4 (𝜑 → (𝐾 · (2↑𝑁)) = ((2↑𝑁) · 𝐾))
1211oveq1d 6828 . . 3 (𝜑 → ((𝐾 · (2↑𝑁)) + 1) = (((2↑𝑁) · 𝐾) + 1))
138, 12eqtrd 2794 . 2 (𝜑𝑃 = (((2↑𝑁) · 𝐾) + 1))
14 simpr 479 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
15 2prm 15607 . . . . . 6 2 ∈ ℙ
1615a1i 11 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 2 ∈ ℙ)
173adantr 472 . . . . 5 ((𝜑𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
18 prmdvdsexpb 15630 . . . . 5 ((𝑝 ∈ ℙ ∧ 2 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
1914, 16, 17, 18syl3anc 1477 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) ↔ 𝑝 = 2))
20 proththd.x . . . . . 6 (𝜑 → ∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
213, 6, 8proththdlem 42040 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ))
2221simp1d 1137 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑃 ∈ ℕ)
2322nncnd 11228 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑃 ∈ ℂ)
24 peano2cnm 10539 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
2523, 24syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑃 − 1) ∈ ℂ)
2625adantr 472 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) ∈ ℂ)
27 2cnd 11285 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℂ)
28 2ne0 11305 . . . . . . . . . . . . . . . . . 18 2 ≠ 0
2928a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℤ) → 2 ≠ 0)
3026, 27, 29divcan1d 10994 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3130eqcomd 2766 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → (𝑃 − 1) = (((𝑃 − 1) / 2) · 2))
3231oveq2d 6829 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = (𝑥↑(((𝑃 − 1) / 2) · 2)))
33 zcn 11574 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3433adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 𝑥 ∈ ℂ)
35 2nn0 11501 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → 2 ∈ ℕ0)
3721simp3d 1139 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
3837nnnn0d 11543 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ0)
3938adantr 472 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℕ0)
4034, 36, 39expmuld 13205 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(((𝑃 − 1) / 2) · 2)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4132, 40eqtrd 2794 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℤ) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4241ad4ant13 1207 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑(𝑃 − 1)) = ((𝑥↑((𝑃 − 1) / 2))↑2))
4342oveq1d 6828 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃))
4438adantr 472 . . . . . . . . . . . . . . . 16 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 2) ∈ ℕ0)
4544anim1i 593 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑃 − 1) / 2) ∈ ℕ0𝑥 ∈ ℤ))
4645ancomd 466 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0))
47 zexpcl 13069 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4846, 47syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
4948adantr 472 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 2)) ∈ ℤ)
5022nnrpd 12063 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℝ+)
5150ad3antrrr 768 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 𝑃 ∈ ℝ+)
5221simp2d 1138 . . . . . . . . . . . . 13 (𝜑 → 1 < 𝑃)
5352ad3antrrr 768 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 < 𝑃)
54 simpr 479 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃))
5549, 51, 53, 54modexp2m1d 42039 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 2))↑2) mod 𝑃) = 1)
5643, 55eqtrd 2794 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑(𝑃 − 1)) mod 𝑃) = 1)
57 oveq2 6821 . . . . . . . . . . . . . . . . . . . . 21 (𝑝 = 2 → ((𝑃 − 1) / 𝑝) = ((𝑃 − 1) / 2))
5857eleq1d 2824 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 2 → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
5958adantl 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑝 = 2) → (((𝑃 − 1) / 𝑝) ∈ ℕ0 ↔ ((𝑃 − 1) / 2) ∈ ℕ0))
6044, 59mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑝 = 2) → ((𝑃 − 1) / 𝑝) ∈ ℕ0)
6160anim2i 594 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (𝜑𝑝 = 2)) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
6261ancoms 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0))
63 zexpcl 13069 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) / 𝑝) ∈ ℕ0) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6462, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ)
6564zred 11674 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
6665adantr 472 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℝ)
67 1red 10247 . . . . . . . . . . . . . 14 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → 1 ∈ ℝ)
6867renegcld 10649 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → -1 ∈ ℝ)
69 oveq2 6821 . . . . . . . . . . . . . . . . . . . 20 (2 = 𝑝 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7069eqcoms 2768 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 2 → ((𝑃 − 1) / 2) = ((𝑃 − 1) / 𝑝))
7170oveq2d 6829 . . . . . . . . . . . . . . . . . 18 (𝑝 = 2 → (𝑥↑((𝑃 − 1) / 2)) = (𝑥↑((𝑃 − 1) / 𝑝)))
7271oveq1d 6828 . . . . . . . . . . . . . . . . 17 (𝑝 = 2 → ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃))
7372eqeq1d 2762 . . . . . . . . . . . . . . . 16 (𝑝 = 2 → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7473adantl 473 . . . . . . . . . . . . . . 15 ((𝜑𝑝 = 2) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7574adantr 472 . . . . . . . . . . . . . 14 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) ↔ ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃)))
7675biimpa 502 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((𝑥↑((𝑃 − 1) / 𝑝)) mod 𝑃) = (-1 mod 𝑃))
77 eqidd 2761 . . . . . . . . . . . . 13 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (1 mod 𝑃) = (1 mod 𝑃))
7866, 68, 67, 67, 51, 76, 77modsub12d 12921 . . . . . . . . . . . 12 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) = ((-1 − 1) mod 𝑃))
7978oveq1d 6828 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((-1 − 1) mod 𝑃) gcd 𝑃))
80 peano2zm 11612 . . . . . . . . . . . . . 14 ((𝑥↑((𝑃 − 1) / 𝑝)) ∈ ℤ → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8164, 80syl 17 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ)
8222ad2antrr 764 . . . . . . . . . . . . 13 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → 𝑃 ∈ ℕ)
83 modgcd 15455 . . . . . . . . . . . . 13 ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8481, 82, 83syl2anc 696 . . . . . . . . . . . 12 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
8584adantr 472 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → ((((𝑥↑((𝑃 − 1) / 𝑝)) − 1) mod 𝑃) gcd 𝑃) = (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃))
86 ax-1cn 10186 . . . . . . . . . . . . . . . . . 18 1 ∈ ℂ
87 negdi2 10531 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
8887eqcomd 2766 . . . . . . . . . . . . . . . . . 18 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → (-1 − 1) = -(1 + 1))
8986, 86, 88mp2an 710 . . . . . . . . . . . . . . . . 17 (-1 − 1) = -(1 + 1)
90 1p1e2 11326 . . . . . . . . . . . . . . . . . 18 (1 + 1) = 2
9190negeqi 10466 . . . . . . . . . . . . . . . . 17 -(1 + 1) = -2
9289, 91eqtri 2782 . . . . . . . . . . . . . . . 16 (-1 − 1) = -2
9392a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (-1 − 1) = -2)
9493oveq1d 6828 . . . . . . . . . . . . . 14 (𝜑 → ((-1 − 1) mod 𝑃) = (-2 mod 𝑃))
9594oveq1d 6828 . . . . . . . . . . . . 13 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = ((-2 mod 𝑃) gcd 𝑃))
96 nnnegz 11572 . . . . . . . . . . . . . . . 16 (2 ∈ ℕ → -2 ∈ ℤ)
972, 96syl 17 . . . . . . . . . . . . . . 15 (𝜑 → -2 ∈ ℤ)
98 modgcd 15455 . . . . . . . . . . . . . . 15 ((-2 ∈ ℤ ∧ 𝑃 ∈ ℕ) → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
9997, 22, 98syl2anc 696 . . . . . . . . . . . . . 14 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = (-2 gcd 𝑃))
100 2z 11601 . . . . . . . . . . . . . . . 16 2 ∈ ℤ
10122nnzd 11673 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℤ)
102 neggcd 15446 . . . . . . . . . . . . . . . 16 ((2 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (-2 gcd 𝑃) = (2 gcd 𝑃))
103100, 101, 102sylancr 698 . . . . . . . . . . . . . . 15 (𝜑 → (-2 gcd 𝑃) = (2 gcd 𝑃))
104 nnz 11591 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
105 oddm1d2 15286 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
107106biimprd 238 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) ∈ ℤ → ¬ 2 ∥ 𝑃))
108 nnz 11591 . . . . . . . . . . . . . . . . . . 19 (((𝑃 − 1) / 2) ∈ ℕ → ((𝑃 − 1) / 2) ∈ ℤ)
109107, 108impel 486 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → ¬ 2 ∥ 𝑃)
110 isoddgcd1 15641 . . . . . . . . . . . . . . . . . . . 20 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
111104, 110syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
112111adantr 472 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (¬ 2 ∥ 𝑃 ↔ (2 gcd 𝑃) = 1))
113109, 112mpbid 222 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ ℕ ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
1141133adant2 1126 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ ℕ ∧ 1 < 𝑃 ∧ ((𝑃 − 1) / 2) ∈ ℕ) → (2 gcd 𝑃) = 1)
11521, 114syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (2 gcd 𝑃) = 1)
116103, 115eqtrd 2794 . . . . . . . . . . . . . 14 (𝜑 → (-2 gcd 𝑃) = 1)
11799, 116eqtrd 2794 . . . . . . . . . . . . 13 (𝜑 → ((-2 mod 𝑃) gcd 𝑃) = 1)
11895, 117eqtrd 2794 . . . . . . . . . . . 12 (𝜑 → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
119118ad3antrrr 768 . . . . . . . . . . 11 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((-1 − 1) mod 𝑃) gcd 𝑃) = 1)
12079, 85, 1193eqtr3d 2802 . . . . . . . . . 10 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)
12156, 120jca 555 . . . . . . . . 9 ((((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) ∧ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃)) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))
122121ex 449 . . . . . . . 8 (((𝜑𝑝 = 2) ∧ 𝑥 ∈ ℤ) → (((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
123122reximdva 3155 . . . . . . 7 ((𝜑𝑝 = 2) → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
124123ex 449 . . . . . 6 (𝜑 → (𝑝 = 2 → (∃𝑥 ∈ ℤ ((𝑥↑((𝑃 − 1) / 2)) mod 𝑃) = (-1 mod 𝑃) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1))))
12520, 124mpid 44 . . . . 5 (𝜑 → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
126125adantr 472 . . . 4 ((𝜑𝑝 ∈ ℙ) → (𝑝 = 2 → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
12719, 126sylbid 230 . . 3 ((𝜑𝑝 ∈ ℙ) → (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
128127ralrimiva 3104 . 2 (𝜑 → ∀𝑝 ∈ ℙ (𝑝 ∥ (2↑𝑁) → ∃𝑥 ∈ ℤ (((𝑥↑(𝑃 − 1)) mod 𝑃) = 1 ∧ (((𝑥↑((𝑃 − 1) / 𝑝)) − 1) gcd 𝑃) = 1)))
1295, 6, 7, 13, 128pockthg 15812 1 (𝜑𝑃 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wrex 3051   class class class wbr 4804  (class class class)co 6813  cc 10126  cr 10127  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133   < clt 10266  cmin 10458  -cneg 10459   / cdiv 10876  cn 11212  2c2 11262  0cn0 11484  cz 11569  +crp 12025   mod cmo 12862  cexp 13054  cdvds 15182   gcd cgcd 15418  cprime 15587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-1st 7333  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-sup 8513  df-inf 8514  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-n0 11485  df-xnn0 11556  df-z 11570  df-uz 11880  df-q 11982  df-rp 12026  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-hash 13312  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-dvds 15183  df-gcd 15419  df-prm 15588  df-odz 15672  df-phi 15673  df-pc 15744
This theorem is referenced by:  41prothprm  42046
  Copyright terms: Public domain W3C validator