Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1hash Structured version   Visualization version   GIF version

Theorem proot1hash 38304
Description: If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1hash.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1hash.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1hash ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))

Proof of Theorem proot1hash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2771 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 proot1hash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odf 18163 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
4 ffn 6184 . . . . 5 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
5 fniniseg2 6485 . . . . 5 (𝑂 Fn (Base‘𝐺) → (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
63, 4, 5mp2b 10 . . . 4 (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}
7 simp3 1132 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
8 fniniseg 6483 . . . . . . . . . 10 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
93, 4, 8mp2b 10 . . . . . . . . 9 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
107, 9sylib 208 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
1110simprd 483 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) = 𝑁)
1211eqeq2d 2781 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ((𝑂𝑥) = (𝑂𝑋) ↔ (𝑂𝑥) = 𝑁))
1312rabbidv 3339 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁})
14 isidom 19519 . . . . . . . . . 10 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1514simprbi 484 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
16153ad2ant1 1127 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ Domn)
17 domnring 19511 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
18 eqid 2771 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
19 proot1hash.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2018, 19unitgrp 18875 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2116, 17, 203syl 18 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝐺 ∈ Grp)
221subgacs 17837 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
23 acsmre 16520 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2421, 22, 233syl 18 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
25 eqid 2771 . . . . . . 7 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
2625mrcssv 16482 . . . . . 6 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺))
27 dfrab3ss 4053 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
2824, 26, 273syl 18 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
29 incom 3956 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
30 simpl1 1227 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ IDomn)
31 simpl2 1229 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
32 simpr 471 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ (𝑂 “ {𝑁}))
33 simpl3 1231 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
3419, 2, 25proot1mul 38303 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (𝑂 “ {𝑁}) ∧ 𝑋 ∈ (𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3530, 31, 32, 33, 34syl22anc 1477 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3635ex 397 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑥 ∈ (𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})))
3736ssrdv 3758 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
386, 37syl5eqssr 3799 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
39 df-ss 3737 . . . . . . 7 ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4038, 39sylib 208 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4129, 40syl5eq 2817 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4213, 28, 413eqtrrd 2810 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
436, 42syl5eq 2817 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
4443fveq2d 6337 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}))
4510simpld 482 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺))
46 simp2 1131 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
4711, 46eqeltrd 2850 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) ∈ ℕ)
481, 2, 25odngen 18199 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
4921, 45, 47, 48syl3anc 1476 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
5011fveq2d 6337 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (ϕ‘(𝑂𝑋)) = (ϕ‘𝑁))
5144, 49, 503eqtrd 2809 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  {crab 3065  cin 3722  wss 3723  {csn 4317  ccnv 5249  cima 5253   Fn wfn 6025  wf 6026  cfv 6030  (class class class)co 6796  cn 11226  0cn0 11499  chash 13321  ϕcphi 15676  Basecbs 16064  s cress 16065  Moorecmre 16450  mrClscmrc 16451  ACScacs 16453  Grpcgrp 17630  SubGrpcsubg 17796  odcod 18151  mulGrpcmgp 18697  Ringcrg 18755  CRingccrg 18756  Unitcui 18847  Domncdomn 19495  IDomncidom 19496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-ofr 7049  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-tpos 7508  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-omul 7722  df-er 7900  df-ec 7902  df-qs 7906  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-acn 8972  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-xnn0 11571  df-z 11585  df-dec 11701  df-uz 11894  df-rp 12036  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-sum 14625  df-dvds 15190  df-gcd 15425  df-phi 15678  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-0g 16310  df-gsum 16311  df-prds 16316  df-pws 16318  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-eqg 17801  df-ghm 17866  df-cntz 17957  df-od 18155  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-srg 18714  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-rnghom 18925  df-subrg 18988  df-lmod 19075  df-lss 19143  df-lsp 19185  df-nzr 19473  df-rlreg 19498  df-domn 19499  df-idom 19500  df-assa 19527  df-asp 19528  df-ascl 19529  df-psr 19571  df-mvr 19572  df-mpl 19573  df-opsr 19575  df-evls 19721  df-evl 19722  df-psr1 19765  df-vr1 19766  df-ply1 19767  df-coe1 19768  df-evl1 19896  df-cnfld 19962  df-mdeg 24035  df-deg1 24036  df-mon1 24110  df-uc1p 24111  df-q1p 24112  df-r1p 24113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator