Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1ex Structured version   Visualization version   GIF version

Theorem proot1ex 38299
Description: The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1ex.g 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
proot1ex.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1ex (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))

Proof of Theorem proot1ex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 neg1cn 11336 . . . 4 -1 ∈ ℂ
2 2rp 12050 . . . . . 6 2 ∈ ℝ+
3 nnrp 12055 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
4 rpdivcl 12069 . . . . . 6 ((2 ∈ ℝ+𝑁 ∈ ℝ+) → (2 / 𝑁) ∈ ℝ+)
52, 3, 4sylancr 698 . . . . 5 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℝ+)
65rpcnd 12087 . . . 4 (𝑁 ∈ ℕ → (2 / 𝑁) ∈ ℂ)
7 cxpcl 24640 . . . 4 ((-1 ∈ ℂ ∧ (2 / 𝑁) ∈ ℂ) → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
81, 6, 7sylancr 698 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ ℂ)
91a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ∈ ℂ)
10 neg1ne0 11338 . . . . 5 -1 ≠ 0
1110a1i 11 . . . 4 (𝑁 ∈ ℕ → -1 ≠ 0)
129, 11, 6cxpne0d 24679 . . 3 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ≠ 0)
13 eldifsn 4462 . . 3 ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ (-1↑𝑐(2 / 𝑁)) ≠ 0))
148, 12, 13sylanbrc 701 . 2 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
151a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ∈ ℂ)
1610a1i 11 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → -1 ≠ 0)
17 nn0cn 11514 . . . . . . . . . 10 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
18 mulcl 10232 . . . . . . . . . 10 (((2 / 𝑁) ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
196, 17, 18syl2an 495 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) ∈ ℂ)
2015, 16, 19cxpefd 24678 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))))
2120eqeq1d 2762 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1))
22 logcl 24535 . . . . . . . . . 10 ((-1 ∈ ℂ ∧ -1 ≠ 0) → (log‘-1) ∈ ℂ)
231, 10, 22mp2an 710 . . . . . . . . 9 (log‘-1) ∈ ℂ
24 mulcl 10232 . . . . . . . . 9 ((((2 / 𝑁) · 𝑥) ∈ ℂ ∧ (log‘-1) ∈ ℂ) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
2519, 23, 24sylancl 697 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ)
26 efeq1 24495 . . . . . . . 8 ((((2 / 𝑁) · 𝑥) · (log‘-1)) ∈ ℂ → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
2725, 26syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((exp‘(((2 / 𝑁) · 𝑥) · (log‘-1))) = 1 ↔ ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ))
28 2cn 11303 . . . . . . . . . . . . . 14 2 ∈ ℂ
2928a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 2 ∈ ℂ)
30 nncn 11240 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3130adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℂ)
3217adantl 473 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℂ)
33 nnne0 11265 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
3433adantr 472 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ≠ 0)
3529, 31, 32, 34div13d 11037 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((2 / 𝑁) · 𝑥) = ((𝑥 / 𝑁) · 2))
36 logm1 24555 . . . . . . . . . . . . 13 (log‘-1) = (i · π)
3736a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (log‘-1) = (i · π))
3835, 37oveq12d 6832 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = (((𝑥 / 𝑁) · 2) · (i · π)))
3932, 31, 34divcld 11013 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥 / 𝑁) ∈ ℂ)
40 ax-icn 10207 . . . . . . . . . . . . . 14 i ∈ ℂ
41 picn 24431 . . . . . . . . . . . . . 14 π ∈ ℂ
4240, 41mulcli 10257 . . . . . . . . . . . . 13 (i · π) ∈ ℂ
4342a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · π) ∈ ℂ)
4439, 29, 43mulassd 10275 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · 2) · (i · π)) = ((𝑥 / 𝑁) · (2 · (i · π))))
4540a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → i ∈ ℂ)
4641a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → π ∈ ℂ)
4729, 45, 46mul12d 10457 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 · (i · π)) = (i · (2 · π)))
4847oveq2d 6830 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥 / 𝑁) · (2 · (i · π))) = ((𝑥 / 𝑁) · (i · (2 · π))))
4938, 44, 483eqtrd 2798 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((2 / 𝑁) · 𝑥) · (log‘-1)) = ((𝑥 / 𝑁) · (i · (2 · π))))
5049oveq1d 6829 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))))
5128, 41mulcli 10257 . . . . . . . . . . . 12 (2 · π) ∈ ℂ
5240, 51mulcli 10257 . . . . . . . . . . 11 (i · (2 · π)) ∈ ℂ
5352a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ∈ ℂ)
54 ine0 10677 . . . . . . . . . . . 12 i ≠ 0
55 2ne0 11325 . . . . . . . . . . . . 13 2 ≠ 0
56 pire 24430 . . . . . . . . . . . . . 14 π ∈ ℝ
57 pipos 24432 . . . . . . . . . . . . . 14 0 < π
5856, 57gt0ne0ii 10776 . . . . . . . . . . . . 13 π ≠ 0
5928, 41, 55, 58mulne0i 10882 . . . . . . . . . . . 12 (2 · π) ≠ 0
6040, 51, 54, 59mulne0i 10882 . . . . . . . . . . 11 (i · (2 · π)) ≠ 0
6160a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (i · (2 · π)) ≠ 0)
6239, 53, 61divcan4d 11019 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((𝑥 / 𝑁) · (i · (2 · π))) / (i · (2 · π))) = (𝑥 / 𝑁))
6350, 62eqtrd 2794 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) = (𝑥 / 𝑁))
6463eleq1d 2824 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (((((2 / 𝑁) · 𝑥) · (log‘-1)) / (i · (2 · π))) ∈ ℤ ↔ (𝑥 / 𝑁) ∈ ℤ))
6521, 27, 643bitrd 294 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((-1↑𝑐((2 / 𝑁) · 𝑥)) = 1 ↔ (𝑥 / 𝑁) ∈ ℤ))
666adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (2 / 𝑁) ∈ ℂ)
67 simpr 479 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
6815, 66, 67cxpmul2d 24675 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐((2 / 𝑁) · 𝑥)) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
69 cnfldexp 20001 . . . . . . . . 9 (((-1↑𝑐(2 / 𝑁)) ∈ ℂ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
708, 69sylan 489 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = ((-1↑𝑐(2 / 𝑁))↑𝑥))
71 cnring 19990 . . . . . . . . . 10 fld ∈ Ring
72 cnfldbas 19972 . . . . . . . . . . . 12 ℂ = (Base‘ℂfld)
73 cnfld0 19992 . . . . . . . . . . . 12 0 = (0g‘ℂfld)
74 cndrng 19997 . . . . . . . . . . . 12 fld ∈ DivRing
7572, 73, 74drngui 18975 . . . . . . . . . . 11 (ℂ ∖ {0}) = (Unit‘ℂfld)
76 eqid 2760 . . . . . . . . . . 11 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
7775, 76unitsubm 18890 . . . . . . . . . 10 (ℂfld ∈ Ring → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7871, 77mp1i 13 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)))
7914adantr 472 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}))
80 eqid 2760 . . . . . . . . . 10 (.g‘(mulGrp‘ℂfld)) = (.g‘(mulGrp‘ℂfld))
81 proot1ex.g . . . . . . . . . 10 𝐺 = ((mulGrp‘ℂfld) ↾s (ℂ ∖ {0}))
82 eqid 2760 . . . . . . . . . 10 (.g𝐺) = (.g𝐺)
8380, 81, 82submmulg 17807 . . . . . . . . 9 (((ℂ ∖ {0}) ∈ (SubMnd‘(mulGrp‘ℂfld)) ∧ 𝑥 ∈ ℕ0 ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0})) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8478, 67, 79, 83syl3anc 1477 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g‘(mulGrp‘ℂfld))(-1↑𝑐(2 / 𝑁))) = (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))))
8568, 70, 843eqtr2rd 2801 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = (-1↑𝑐((2 / 𝑁) · 𝑥)))
8685eqeq1d 2762 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → ((𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1 ↔ (-1↑𝑐((2 / 𝑁) · 𝑥)) = 1))
87 nnz 11611 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
8887adantr 472 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑁 ∈ ℤ)
89 nn0z 11612 . . . . . . . 8 (𝑥 ∈ ℕ0𝑥 ∈ ℤ)
9089adantl 473 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℤ)
91 dvdsval2 15205 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ∧ 𝑥 ∈ ℤ) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9288, 34, 90, 91syl3anc 1477 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥 / 𝑁) ∈ ℤ))
9365, 86, 923bitr4rd 301 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑥 ∈ ℕ0) → (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9493ralrimiva 3104 . . . 4 (𝑁 ∈ ℕ → ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1))
9575, 81unitgrp 18887 . . . . . 6 (ℂfld ∈ Ring → 𝐺 ∈ Grp)
9671, 95mp1i 13 . . . . 5 (𝑁 ∈ ℕ → 𝐺 ∈ Grp)
97 nnnn0 11511 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
9875, 81unitgrpbas 18886 . . . . . 6 (ℂ ∖ {0}) = (Base‘𝐺)
99 proot1ex.o . . . . . 6 𝑂 = (od‘𝐺)
100 cnfld1 19993 . . . . . . . 8 1 = (1r‘ℂfld)
10175, 81, 100unitgrpid 18889 . . . . . . 7 (ℂfld ∈ Ring → 1 = (0g𝐺))
10271, 101ax-mp 5 . . . . . 6 1 = (0g𝐺)
10398, 99, 82, 102odeq 18189 . . . . 5 ((𝐺 ∈ Grp ∧ (-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ 𝑁 ∈ ℕ0) → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10496, 14, 97, 103syl3anc 1477 . . . 4 (𝑁 ∈ ℕ → (𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))) ↔ ∀𝑥 ∈ ℕ0 (𝑁𝑥 ↔ (𝑥(.g𝐺)(-1↑𝑐(2 / 𝑁))) = 1)))
10594, 104mpbird 247 . . 3 (𝑁 ∈ ℕ → 𝑁 = (𝑂‘(-1↑𝑐(2 / 𝑁))))
106105eqcomd 2766 . 2 (𝑁 ∈ ℕ → (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)
10798, 99odf 18176 . . . 4 𝑂:(ℂ ∖ {0})⟶ℕ0
108 ffn 6206 . . . 4 (𝑂:(ℂ ∖ {0})⟶ℕ0𝑂 Fn (ℂ ∖ {0}))
109107, 108ax-mp 5 . . 3 𝑂 Fn (ℂ ∖ {0})
110 fniniseg 6502 . . 3 (𝑂 Fn (ℂ ∖ {0}) → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
111109, 110mp1i 13 . 2 (𝑁 ∈ ℕ → ((-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}) ↔ ((-1↑𝑐(2 / 𝑁)) ∈ (ℂ ∖ {0}) ∧ (𝑂‘(-1↑𝑐(2 / 𝑁))) = 𝑁)))
11214, 106, 111mpbir2and 995 1 (𝑁 ∈ ℕ → (-1↑𝑐(2 / 𝑁)) ∈ (𝑂 “ {𝑁}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wne 2932  wral 3050  cdif 3712  {csn 4321   class class class wbr 4804  ccnv 5265  cima 5269   Fn wfn 6044  wf 6045  cfv 6049  (class class class)co 6814  cc 10146  0cc0 10148  1c1 10149  ici 10150   · cmul 10153  -cneg 10479   / cdiv 10896  cn 11232  2c2 11282  0cn0 11504  cz 11589  +crp 12045  cexp 13074  expce 15011  πcpi 15016  cdvds 15202  s cress 16080  0gc0g 16322  SubMndcsubmnd 17555  Grpcgrp 17643  .gcmg 17761  odcod 18164  mulGrpcmgp 18709  Ringcrg 18767  fldccnfld 19968  logclog 24521  𝑐ccxp 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-tpos 7522  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-dvds 15203  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-grp 17646  df-minusg 17647  df-sbg 17648  df-mulg 17762  df-cntz 17970  df-od 18168  df-cmn 18415  df-mgp 18710  df-ur 18722  df-ring 18769  df-cring 18770  df-oppr 18843  df-dvdsr 18861  df-unit 18862  df-invr 18892  df-dvr 18903  df-drng 18971  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523  df-cxp 24524
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator