Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodtp Structured version   Visualization version   GIF version

Theorem prodtp 29913
 Description: A product over a triple is the product of the elements. (Contributed by Thierry Arnoux, 1-Jan-2022.)
Hypotheses
Ref Expression
prodpr.1 (𝑘 = 𝐴𝐷 = 𝐸)
prodpr.2 (𝑘 = 𝐵𝐷 = 𝐹)
prodpr.a (𝜑𝐴𝑉)
prodpr.b (𝜑𝐵𝑊)
prodpr.e (𝜑𝐸 ∈ ℂ)
prodpr.f (𝜑𝐹 ∈ ℂ)
prodpr.3 (𝜑𝐴𝐵)
prodtp.1 (𝑘 = 𝐶𝐷 = 𝐺)
prodtp.c (𝜑𝐶𝑋)
prodtp.g (𝜑𝐺 ∈ ℂ)
prodtp.2 (𝜑𝐴𝐶)
prodtp.3 (𝜑𝐵𝐶)
Assertion
Ref Expression
prodtp (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝑘,𝐸   𝑘,𝐹   𝑘,𝐺   𝑘,𝑉   𝑘,𝑊   𝑘,𝑋   𝜑,𝑘
Allowed substitution hint:   𝐷(𝑘)

Proof of Theorem prodtp
StepHypRef Expression
1 prodtp.2 . . . 4 (𝜑𝐴𝐶)
2 prodtp.3 . . . 4 (𝜑𝐵𝐶)
3 disjprsn 4386 . . . 4 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
41, 2, 3syl2anc 573 . . 3 (𝜑 → ({𝐴, 𝐵} ∩ {𝐶}) = ∅)
5 df-tp 4321 . . . 4 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
65a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}))
7 tpfi 8392 . . . 4 {𝐴, 𝐵, 𝐶} ∈ Fin
87a1i 11 . . 3 (𝜑 → {𝐴, 𝐵, 𝐶} ∈ Fin)
9 vex 3354 . . . . 5 𝑘 ∈ V
109eltp 4367 . . . 4 (𝑘 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
11 prodpr.1 . . . . . . . 8 (𝑘 = 𝐴𝐷 = 𝐸)
1211adantl 467 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐷 = 𝐸)
13 prodpr.e . . . . . . . 8 (𝜑𝐸 ∈ ℂ)
1413adantr 466 . . . . . . 7 ((𝜑𝑘 = 𝐴) → 𝐸 ∈ ℂ)
1512, 14eqeltrd 2850 . . . . . 6 ((𝜑𝑘 = 𝐴) → 𝐷 ∈ ℂ)
1615adantlr 694 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐴) → 𝐷 ∈ ℂ)
17 prodpr.2 . . . . . . . 8 (𝑘 = 𝐵𝐷 = 𝐹)
1817adantl 467 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐷 = 𝐹)
19 prodpr.f . . . . . . . 8 (𝜑𝐹 ∈ ℂ)
2019adantr 466 . . . . . . 7 ((𝜑𝑘 = 𝐵) → 𝐹 ∈ ℂ)
2118, 20eqeltrd 2850 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2221adantlr 694 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ)
23 prodtp.1 . . . . . . . 8 (𝑘 = 𝐶𝐷 = 𝐺)
2423adantl 467 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐷 = 𝐺)
25 prodtp.g . . . . . . . 8 (𝜑𝐺 ∈ ℂ)
2625adantr 466 . . . . . . 7 ((𝜑𝑘 = 𝐶) → 𝐺 ∈ ℂ)
2724, 26eqeltrd 2850 . . . . . 6 ((𝜑𝑘 = 𝐶) → 𝐷 ∈ ℂ)
2827adantlr 694 . . . . 5 (((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) ∧ 𝑘 = 𝐶) → 𝐷 ∈ ℂ)
29 simpr 471 . . . . 5 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶))
3016, 22, 28, 29mpjao3dan 1543 . . . 4 ((𝜑 ∧ (𝑘 = 𝐴𝑘 = 𝐵𝑘 = 𝐶)) → 𝐷 ∈ ℂ)
3110, 30sylan2b 581 . . 3 ((𝜑𝑘 ∈ {𝐴, 𝐵, 𝐶}) → 𝐷 ∈ ℂ)
324, 6, 8, 31fprodsplit 14903 . 2 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷))
33 prodpr.a . . . 4 (𝜑𝐴𝑉)
34 prodpr.b . . . 4 (𝜑𝐵𝑊)
35 prodpr.3 . . . 4 (𝜑𝐴𝐵)
3611, 17, 33, 34, 13, 19, 35prodpr 29912 . . 3 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵}𝐷 = (𝐸 · 𝐹))
37 prodtp.c . . . 4 (𝜑𝐶𝑋)
3823prodsn 14899 . . . 4 ((𝐶𝑋𝐺 ∈ ℂ) → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
3937, 25, 38syl2anc 573 . . 3 (𝜑 → ∏𝑘 ∈ {𝐶}𝐷 = 𝐺)
4036, 39oveq12d 6811 . 2 (𝜑 → (∏𝑘 ∈ {𝐴, 𝐵}𝐷 · ∏𝑘 ∈ {𝐶}𝐷) = ((𝐸 · 𝐹) · 𝐺))
4132, 40eqtrd 2805 1 (𝜑 → ∏𝑘 ∈ {𝐴, 𝐵, 𝐶}𝐷 = ((𝐸 · 𝐹) · 𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   ∨ w3o 1070   = wceq 1631   ∈ wcel 2145   ≠ wne 2943   ∪ cun 3721   ∩ cin 3722  ∅c0 4063  {csn 4316  {cpr 4318  {ctp 4320  (class class class)co 6793  Fincfn 8109  ℂcc 10136   · cmul 10143  ∏cprod 14842 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-n0 11495  df-z 11580  df-uz 11889  df-rp 12036  df-fz 12534  df-fzo 12674  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-prod 14843 This theorem is referenced by:  hgt750lemg  31072
 Copyright terms: Public domain W3C validator