Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prodindf Structured version   Visualization version   GIF version

Theorem prodindf 30419
 Description: The product of indicators is one if and only if all values are in the set. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
prodindf.1 (𝜑𝑂𝑉)
prodindf.2 (𝜑𝐴 ∈ Fin)
prodindf.3 (𝜑𝐵𝑂)
prodindf.4 (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
prodindf (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐹   𝑘,𝑂   𝜑,𝑘
Allowed substitution hint:   𝑉(𝑘)

Proof of Theorem prodindf
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6332 . . . 4 (𝑘 = 𝑙 → (𝐹𝑘) = (𝐹𝑙))
21fveq2d 6336 . . 3 (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)))
3 prodindf.2 . . 3 (𝜑𝐴 ∈ Fin)
4 prodindf.1 . . . . . 6 (𝜑𝑂𝑉)
5 prodindf.3 . . . . . 6 (𝜑𝐵𝑂)
6 indf 30411 . . . . . 6 ((𝑂𝑉𝐵𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
74, 5, 6syl2anc 565 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
87adantr 466 . . . 4 ((𝜑𝑘𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1})
9 prodindf.4 . . . . 5 (𝜑𝐹:𝐴𝑂)
109ffvelrnda 6502 . . . 4 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ 𝑂)
118, 10ffvelrnd 6503 . . 3 ((𝜑𝑘𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) ∈ {0, 1})
122, 3, 11fprodex01 29905 . 2 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0))
13 fveq2 6332 . . . . . . 7 (𝑙 = 𝑘 → (𝐹𝑙) = (𝐹𝑘))
1413fveq2d 6336 . . . . . 6 (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)))
1514eqeq1d 2772 . . . . 5 (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1615cbvralv 3319 . . . 4 (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1)
1716a1i 11 . . 3 (𝜑 → (∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1 ↔ ∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1))
1817ifbid 4245 . 2 (𝜑 → if(∀𝑙𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑙)) = 1, 1, 0) = if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0))
19 eqid 2770 . . . . . 6 (𝑘𝐴 ↦ (𝐹𝑘)) = (𝑘𝐴 ↦ (𝐹𝑘))
2019rnmptss 6534 . . . . 5 (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
21 nfv 1994 . . . . . . . 8 𝑘𝜑
22 nfmpt1 4879 . . . . . . . . . 10 𝑘(𝑘𝐴 ↦ (𝐹𝑘))
2322nfrn 5506 . . . . . . . . 9 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘))
24 nfcv 2912 . . . . . . . . 9 𝑘𝐵
2523, 24nfss 3743 . . . . . . . 8 𝑘ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵
2621, 25nfan 1979 . . . . . . 7 𝑘(𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
27 simplr 744 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵)
289feqmptd 6391 . . . . . . . . . . . . . 14 (𝜑𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
29 eqidd 2771 . . . . . . . . . . . . . 14 (𝜑𝑘 = 𝑘)
3028, 29fveq12d 6338 . . . . . . . . . . . . 13 (𝜑 → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3130ralrimivw 3115 . . . . . . . . . . . 12 (𝜑 → ∀𝑘𝐴 (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
3231r19.21bi 3080 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → (𝐹𝑘) = ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘))
33 ffn 6185 . . . . . . . . . . . . . . 15 (𝐹:𝐴𝑂𝐹 Fn 𝐴)
349, 33syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐴)
3528fneq1d 6121 . . . . . . . . . . . . . 14 (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴))
3634, 35mpbid 222 . . . . . . . . . . . . 13 (𝜑 → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
3736adantr 466 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → (𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴)
38 simpr 471 . . . . . . . . . . . 12 ((𝜑𝑘𝐴) → 𝑘𝐴)
39 fnfvelrn 6499 . . . . . . . . . . . 12 (((𝑘𝐴 ↦ (𝐹𝑘)) Fn 𝐴𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4037, 38, 39syl2anc 565 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → ((𝑘𝐴 ↦ (𝐹𝑘))‘𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4132, 40eqeltrd 2849 . . . . . . . . . 10 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4241adantlr 686 . . . . . . . . 9 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ran (𝑘𝐴 ↦ (𝐹𝑘)))
4327, 42sseldd 3751 . . . . . . . 8 (((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ 𝐵)
4443ex 397 . . . . . . 7 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → (𝑘𝐴 → (𝐹𝑘) ∈ 𝐵))
4526, 44ralrimi 3105 . . . . . 6 ((𝜑 ∧ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵) → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
4645ex 397 . . . . 5 (𝜑 → (ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵 → ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
4720, 46impbid2 216 . . . 4 (𝜑 → (∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
484adantr 466 . . . . . 6 ((𝜑𝑘𝐴) → 𝑂𝑉)
495adantr 466 . . . . . 6 ((𝜑𝑘𝐴) → 𝐵𝑂)
50 ind1a 30415 . . . . . 6 ((𝑂𝑉𝐵𝑂 ∧ (𝐹𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
5148, 49, 10, 50syl3anc 1475 . . . . 5 ((𝜑𝑘𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ (𝐹𝑘) ∈ 𝐵))
5251ralbidva 3133 . . . 4 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ∀𝑘𝐴 (𝐹𝑘) ∈ 𝐵))
5328rneqd 5491 . . . . 5 (𝜑 → ran 𝐹 = ran (𝑘𝐴 ↦ (𝐹𝑘)))
5453sseq1d 3779 . . . 4 (𝜑 → (ran 𝐹𝐵 ↔ ran (𝑘𝐴 ↦ (𝐹𝑘)) ⊆ 𝐵))
5547, 52, 543bitr4d 300 . . 3 (𝜑 → (∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1 ↔ ran 𝐹𝐵))
5655ifbid 4245 . 2 (𝜑 → if(∀𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = 1, 1, 0) = if(ran 𝐹𝐵, 1, 0))
5712, 18, 563eqtrd 2808 1 (𝜑 → ∏𝑘𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹𝑘)) = if(ran 𝐹𝐵, 1, 0))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1630   ∈ wcel 2144  ∀wral 3060   ⊆ wss 3721  ifcif 4223  {cpr 4316   ↦ cmpt 4861  ran crn 5250   Fn wfn 6026  ⟶wf 6027  ‘cfv 6031  Fincfn 8108  0cc0 10137  1c1 10138  ∏cprod 14841  𝟭cind 30406 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-div 10886  df-nn 11222  df-2 11280  df-3 11281  df-n0 11494  df-z 11579  df-uz 11888  df-rp 12035  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-prod 14842  df-ind 30407 This theorem is referenced by:  hashreprin  31032
 Copyright terms: Public domain W3C validator