Step | Hyp | Ref
| Expression |
1 | | fveq2 6332 |
. . . 4
⊢ (𝑘 = 𝑙 → (𝐹‘𝑘) = (𝐹‘𝑙)) |
2 | 1 | fveq2d 6336 |
. . 3
⊢ (𝑘 = 𝑙 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙))) |
3 | | prodindf.2 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
4 | | prodindf.1 |
. . . . . 6
⊢ (𝜑 → 𝑂 ∈ 𝑉) |
5 | | prodindf.3 |
. . . . . 6
⊢ (𝜑 → 𝐵 ⊆ 𝑂) |
6 | | indf 30411 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
7 | 4, 5, 6 | syl2anc 565 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
8 | 7 | adantr 466 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝟭‘𝑂)‘𝐵):𝑂⟶{0, 1}) |
9 | | prodindf.4 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
10 | 9 | ffvelrnda 6502 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝑂) |
11 | 8, 10 | ffvelrnd 6503 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) ∈ {0, 1}) |
12 | 2, 3, 11 | fprodex01 29905 |
. 2
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0)) |
13 | | fveq2 6332 |
. . . . . . 7
⊢ (𝑙 = 𝑘 → (𝐹‘𝑙) = (𝐹‘𝑘)) |
14 | 13 | fveq2d 6336 |
. . . . . 6
⊢ (𝑙 = 𝑘 → (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘))) |
15 | 14 | eqeq1d 2772 |
. . . . 5
⊢ (𝑙 = 𝑘 → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
16 | 15 | cbvralv 3319 |
. . . 4
⊢
(∀𝑙 ∈
𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1) |
17 | 16 | a1i 11 |
. . 3
⊢ (𝜑 → (∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1 ↔ ∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1)) |
18 | 17 | ifbid 4245 |
. 2
⊢ (𝜑 → if(∀𝑙 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑙)) = 1, 1, 0) = if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0)) |
19 | | eqid 2770 |
. . . . . 6
⊢ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
20 | 19 | rnmptss 6534 |
. . . . 5
⊢
(∀𝑘 ∈
𝐴 (𝐹‘𝑘) ∈ 𝐵 → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
21 | | nfv 1994 |
. . . . . . . 8
⊢
Ⅎ𝑘𝜑 |
22 | | nfmpt1 4879 |
. . . . . . . . . 10
⊢
Ⅎ𝑘(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
23 | 22 | nfrn 5506 |
. . . . . . . . 9
⊢
Ⅎ𝑘ran
(𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) |
24 | | nfcv 2912 |
. . . . . . . . 9
⊢
Ⅎ𝑘𝐵 |
25 | 23, 24 | nfss 3743 |
. . . . . . . 8
⊢
Ⅎ𝑘ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 |
26 | 21, 25 | nfan 1979 |
. . . . . . 7
⊢
Ⅎ𝑘(𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
27 | | simplr 744 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) |
28 | 9 | feqmptd 6391 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 = (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
29 | | eqidd 2771 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑘 = 𝑘) |
30 | 28, 29 | fveq12d 6338 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
31 | 30 | ralrimivw 3115 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
32 | 31 | r19.21bi 3080 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) = ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘)) |
33 | | ffn 6185 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐴⟶𝑂 → 𝐹 Fn 𝐴) |
34 | 9, 33 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐴) |
35 | 28 | fneq1d 6121 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐹 Fn 𝐴 ↔ (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴)) |
36 | 34, 35 | mpbid 222 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
37 | 36 | adantr 466 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴) |
38 | | simpr 471 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑘 ∈ 𝐴) |
39 | | fnfvelrn 6499 |
. . . . . . . . . . . 12
⊢ (((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) Fn 𝐴 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
40 | 37, 38, 39 | syl2anc 565 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
41 | 32, 40 | eqeltrd 2849 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
42 | 41 | adantlr 686 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
43 | 27, 42 | sseldd 3751 |
. . . . . . . 8
⊢ (((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) ∧ 𝑘 ∈ 𝐴) → (𝐹‘𝑘) ∈ 𝐵) |
44 | 43 | ex 397 |
. . . . . . 7
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → (𝑘 ∈ 𝐴 → (𝐹‘𝑘) ∈ 𝐵)) |
45 | 26, 44 | ralrimi 3105 |
. . . . . 6
⊢ ((𝜑 ∧ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵) → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵) |
46 | 45 | ex 397 |
. . . . 5
⊢ (𝜑 → (ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵 → ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
47 | 20, 46 | impbid2 216 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
48 | 4 | adantr 466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑂 ∈ 𝑉) |
49 | 5 | adantr 466 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ⊆ 𝑂) |
50 | | ind1a 30415 |
. . . . . 6
⊢ ((𝑂 ∈ 𝑉 ∧ 𝐵 ⊆ 𝑂 ∧ (𝐹‘𝑘) ∈ 𝑂) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
51 | 48, 49, 10, 50 | syl3anc 1475 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → ((((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ (𝐹‘𝑘) ∈ 𝐵)) |
52 | 51 | ralbidva 3133 |
. . . 4
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ∀𝑘 ∈ 𝐴 (𝐹‘𝑘) ∈ 𝐵)) |
53 | 28 | rneqd 5491 |
. . . . 5
⊢ (𝜑 → ran 𝐹 = ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘))) |
54 | 53 | sseq1d 3779 |
. . . 4
⊢ (𝜑 → (ran 𝐹 ⊆ 𝐵 ↔ ran (𝑘 ∈ 𝐴 ↦ (𝐹‘𝑘)) ⊆ 𝐵)) |
55 | 47, 52, 54 | 3bitr4d 300 |
. . 3
⊢ (𝜑 → (∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1 ↔ ran 𝐹 ⊆ 𝐵)) |
56 | 55 | ifbid 4245 |
. 2
⊢ (𝜑 → if(∀𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = 1, 1, 0) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |
57 | 12, 18, 56 | 3eqtrd 2808 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 (((𝟭‘𝑂)‘𝐵)‘(𝐹‘𝑘)) = if(ran 𝐹 ⊆ 𝐵, 1, 0)) |