MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prodfdiv Structured version   Visualization version   GIF version

Theorem prodfdiv 14672
Description: The quotient of two infinite products. (Contributed by Scott Fenton, 15-Jan-2018.)
Hypotheses
Ref Expression
prodfdiv.1 (𝜑𝑁 ∈ (ℤ𝑀))
prodfdiv.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
prodfdiv.3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
prodfdiv.4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
prodfdiv.5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
Assertion
Ref Expression
prodfdiv (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐻   𝜑,𝑘   𝑘,𝑀   𝑘,𝑁

Proof of Theorem prodfdiv
Dummy variables 𝑥 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 prodfdiv.3 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ)
3 prodfdiv.4 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0)
4 fveq2 6229 . . . . . . 7 (𝑛 = 𝑘 → (𝐺𝑛) = (𝐺𝑘))
54oveq2d 6706 . . . . . 6 (𝑛 = 𝑘 → (1 / (𝐺𝑛)) = (1 / (𝐺𝑘)))
6 eqid 2651 . . . . . 6 (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))) = (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))
7 ovex 6718 . . . . . 6 (1 / (𝐺𝑘)) ∈ V
85, 6, 7fvmpt 6321 . . . . 5 (𝑘 ∈ (𝑀...𝑁) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
98adantl 481 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) = (1 / (𝐺𝑘)))
101, 2, 3, 9prodfrec 14671 . . 3 (𝜑 → (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁) = (1 / (seq𝑀( · , 𝐺)‘𝑁)))
1110oveq2d 6706 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
12 prodfdiv.2 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℂ)
13 eleq1 2718 . . . . . . . . 9 (𝑘 = 𝑛 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑛 ∈ (𝑀...𝑁)))
1413anbi2d 740 . . . . . . . 8 (𝑘 = 𝑛 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑛 ∈ (𝑀...𝑁))))
15 fveq2 6229 . . . . . . . . 9 (𝑘 = 𝑛 → (𝐺𝑘) = (𝐺𝑛))
1615eleq1d 2715 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ∈ ℂ ↔ (𝐺𝑛) ∈ ℂ))
1714, 16imbi12d 333 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ∈ ℂ) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)))
1817, 2chvarv 2299 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ∈ ℂ)
1915neeq1d 2882 . . . . . . . 8 (𝑘 = 𝑛 → ((𝐺𝑘) ≠ 0 ↔ (𝐺𝑛) ≠ 0))
2014, 19imbi12d 333 . . . . . . 7 (𝑘 = 𝑛 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐺𝑘) ≠ 0) ↔ ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)))
2120, 3chvarv 2299 . . . . . 6 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (𝐺𝑛) ≠ 0)
2218, 21reccld 10832 . . . . 5 ((𝜑𝑛 ∈ (𝑀...𝑁)) → (1 / (𝐺𝑛)) ∈ ℂ)
2322, 6fmptd 6425 . . . 4 (𝜑 → (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))):(𝑀...𝑁)⟶ℂ)
2423ffvelrnda 6399 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘) ∈ ℂ)
2512, 2, 3divrecd 10842 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) / (𝐺𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
26 prodfdiv.5 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))
279oveq2d 6706 . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)) = ((𝐹𝑘) · (1 / (𝐺𝑘))))
2825, 26, 273eqtr4d 2695 . . 3 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐻𝑘) = ((𝐹𝑘) · ((𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛)))‘𝑘)))
291, 12, 24, 28prodfmul 14666 . 2 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) · (seq𝑀( · , (𝑛 ∈ (𝑀...𝑁) ↦ (1 / (𝐺𝑛))))‘𝑁)))
30 mulcl 10058 . . . . 5 ((𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑘 · 𝑥) ∈ ℂ)
3130adantl 481 . . . 4 ((𝜑 ∧ (𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ)) → (𝑘 · 𝑥) ∈ ℂ)
321, 12, 31seqcl 12861 . . 3 (𝜑 → (seq𝑀( · , 𝐹)‘𝑁) ∈ ℂ)
331, 2, 31seqcl 12861 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ∈ ℂ)
341, 2, 3prodfn0 14670 . . 3 (𝜑 → (seq𝑀( · , 𝐺)‘𝑁) ≠ 0)
3532, 33, 34divrecd 10842 . 2 (𝜑 → ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)) = ((seq𝑀( · , 𝐹)‘𝑁) · (1 / (seq𝑀( · , 𝐺)‘𝑁))))
3611, 29, 353eqtr4d 2695 1 (𝜑 → (seq𝑀( · , 𝐻)‘𝑁) = ((seq𝑀( · , 𝐹)‘𝑁) / (seq𝑀( · , 𝐺)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  wne 2823  cmpt 4762  cfv 5926  (class class class)co 6690  cc 9972  0cc0 9974  1c1 9975   · cmul 9979   / cdiv 10722  cuz 11725  ...cfz 12364  seqcseq 12841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842
This theorem is referenced by:  fproddiv  14735
  Copyright terms: Public domain W3C validator