![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prodeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for product. (Contributed by Scott Fenton, 4-Dec-2017.) |
Ref | Expression |
---|---|
prodeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
prodeq1d | ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | prodeq1 14846 | . 2 ⊢ (𝐴 = 𝐵 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐶 = ∏𝑘 ∈ 𝐵 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∏cprod 14842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-uni 4575 df-br 4787 df-opab 4847 df-mpt 4864 df-xp 5255 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-iota 5994 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-seq 13009 df-prod 14843 |
This theorem is referenced by: prodeq12dv 14863 prodeq12rdv 14864 fprodf1o 14883 prodss 14884 fprod1 14900 fprodp1 14906 fprodfac 14910 fprodabs 14911 fprod2d 14918 fprodcom2 14921 risefacval 14945 fallfacval 14946 risefacval2 14947 fallfacval2 14948 risefacp1 14966 fallfacp1 14967 fallfacval4 14980 fprodefsum 15031 prmoval 15944 prmop1 15949 prmgapprmo 15973 gausslemma2dlem4 25315 breprexplema 31048 breprexplemc 31050 breprexp 31051 circlemethhgt 31061 bcprod 31962 dvmptfprodlem 40677 dvmptfprod 40678 ovnval 41275 hoiprodp1 41322 hoidmv1le 41328 hspmbllem1 41360 fmtnorec2 41983 |
Copyright terms: Public domain | W3C validator |