![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > prob01 | Structured version Visualization version GIF version |
Description: A probability is an element of [ 0 , 1 ]. First axiom of Kolmogorov. (Contributed by Thierry Arnoux, 25-Dec-2016.) |
Ref | Expression |
---|---|
prob01 | ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | domprobmeas 30802 | . . . . 5 ⊢ (𝑃 ∈ Prob → 𝑃 ∈ (measures‘dom 𝑃)) | |
2 | measvxrge0 30598 | . . . . 5 ⊢ ((𝑃 ∈ (measures‘dom 𝑃) ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]+∞)) | |
3 | 1, 2 | sylan 489 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]+∞)) |
4 | elxrge0 12494 | . . . 4 ⊢ ((𝑃‘𝐴) ∈ (0[,]+∞) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴))) | |
5 | 3, 4 | sylib 208 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴))) |
6 | 1 | adantr 472 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝑃 ∈ (measures‘dom 𝑃)) |
7 | simpr 479 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ∈ dom 𝑃) | |
8 | measbase 30590 | . . . . . 6 ⊢ (𝑃 ∈ (measures‘dom 𝑃) → dom 𝑃 ∈ ∪ ran sigAlgebra) | |
9 | unielsiga 30521 | . . . . . 6 ⊢ (dom 𝑃 ∈ ∪ ran sigAlgebra → ∪ dom 𝑃 ∈ dom 𝑃) | |
10 | 6, 8, 9 | 3syl 18 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ∪ dom 𝑃 ∈ dom 𝑃) |
11 | elssuni 4619 | . . . . . 6 ⊢ (𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃) | |
12 | 11 | adantl 473 | . . . . 5 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → 𝐴 ⊆ ∪ dom 𝑃) |
13 | 6, 7, 10, 12 | measssd 30608 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃)) |
14 | probtot 30804 | . . . . . 6 ⊢ (𝑃 ∈ Prob → (𝑃‘∪ dom 𝑃) = 1) | |
15 | 14 | breq2d 4816 | . . . . 5 ⊢ (𝑃 ∈ Prob → ((𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃) ↔ (𝑃‘𝐴) ≤ 1)) |
16 | 15 | adantr 472 | . . . 4 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ≤ (𝑃‘∪ dom 𝑃) ↔ (𝑃‘𝐴) ≤ 1)) |
17 | 13, 16 | mpbid 222 | . . 3 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ≤ 1) |
18 | df-3an 1074 | . . 3 ⊢ (((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1) ↔ (((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴)) ∧ (𝑃‘𝐴) ≤ 1)) | |
19 | 5, 17, 18 | sylanbrc 701 | . 2 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1)) |
20 | 0xr 10298 | . . 3 ⊢ 0 ∈ ℝ* | |
21 | 1re 10251 | . . . 4 ⊢ 1 ∈ ℝ | |
22 | 21 | rexri 10309 | . . 3 ⊢ 1 ∈ ℝ* |
23 | elicc1 12432 | . . 3 ⊢ ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑃‘𝐴) ∈ (0[,]1) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1))) | |
24 | 20, 22, 23 | mp2an 710 | . 2 ⊢ ((𝑃‘𝐴) ∈ (0[,]1) ↔ ((𝑃‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑃‘𝐴) ∧ (𝑃‘𝐴) ≤ 1)) |
25 | 19, 24 | sylibr 224 | 1 ⊢ ((𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃) → (𝑃‘𝐴) ∈ (0[,]1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 ⊆ wss 3715 ∪ cuni 4588 class class class wbr 4804 dom cdm 5266 ran crn 5267 ‘cfv 6049 (class class class)co 6814 0cc0 10148 1c1 10149 +∞cpnf 10283 ℝ*cxr 10285 ≤ cle 10287 [,]cicc 12391 sigAlgebracsiga 30500 measurescmeas 30588 Probcprb 30799 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-ac2 9497 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-disj 4773 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-acn 8978 df-ac 9149 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ioc 12393 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-fac 13275 df-bc 13304 df-hash 13332 df-shft 14026 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-limsup 14421 df-clim 14438 df-rlim 14439 df-sum 14636 df-ef 15017 df-sin 15019 df-cos 15020 df-pi 15022 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-hom 16188 df-cco 16189 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-pt 16327 df-prds 16330 df-ordt 16383 df-xrs 16384 df-qtop 16389 df-imas 16390 df-xps 16392 df-mre 16468 df-mrc 16469 df-acs 16471 df-ps 17421 df-tsr 17422 df-plusf 17462 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-mhm 17556 df-submnd 17557 df-grp 17646 df-minusg 17647 df-sbg 17648 df-mulg 17762 df-subg 17812 df-cntz 17970 df-cmn 18415 df-abl 18416 df-mgp 18710 df-ur 18722 df-ring 18769 df-cring 18770 df-subrg 19000 df-abv 19039 df-lmod 19087 df-scaf 19088 df-sra 19394 df-rgmod 19395 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lp 21162 df-perf 21163 df-cn 21253 df-cnp 21254 df-haus 21341 df-tx 21587 df-hmeo 21780 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-tmd 22097 df-tgp 22098 df-tsms 22151 df-trg 22184 df-xms 22346 df-ms 22347 df-tms 22348 df-nm 22608 df-ngp 22609 df-nrg 22611 df-nlm 22612 df-ii 22901 df-cncf 22902 df-limc 23849 df-dv 23850 df-log 24523 df-esum 30420 df-siga 30501 df-meas 30589 df-prob 30800 |
This theorem is referenced by: probun 30811 probdif 30812 probvalrnd 30816 totprobd 30818 cndprobin 30826 cndprob01 30827 cndprobtot 30828 cndprobnul 30829 cndprobprob 30830 bayesth 30831 dstrvprob 30863 dstfrvclim1 30869 |
Copyright terms: Public domain | W3C validator |