MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prnzgOLD Structured version   Visualization version   GIF version

Theorem prnzgOLD 4455
Description: Obsolete proof of prnzg 4454 as of 23-Jul-2021. (Contributed by FL, 19-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
prnzgOLD (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)

Proof of Theorem prnzgOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 preq1 4412 . . 3 (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵})
21neeq1d 2991 . 2 (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅))
3 vex 3343 . . 3 𝑥 ∈ V
43prnz 4453 . 2 {𝑥, 𝐵} ≠ ∅
52, 4vtoclg 3406 1 (𝐴𝑉 → {𝐴, 𝐵} ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  wne 2932  c0 4058  {cpr 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-v 3342  df-dif 3718  df-un 3720  df-nul 4059  df-sn 4322  df-pr 4324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator