![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnzgOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of prnzg 4454 as of 23-Jul-2021. (Contributed by FL, 19-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
prnzgOLD | ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1 4412 | . . 3 ⊢ (𝑥 = 𝐴 → {𝑥, 𝐵} = {𝐴, 𝐵}) | |
2 | 1 | neeq1d 2991 | . 2 ⊢ (𝑥 = 𝐴 → ({𝑥, 𝐵} ≠ ∅ ↔ {𝐴, 𝐵} ≠ ∅)) |
3 | vex 3343 | . . 3 ⊢ 𝑥 ∈ V | |
4 | 3 | prnz 4453 | . 2 ⊢ {𝑥, 𝐵} ≠ ∅ |
5 | 2, 4 | vtoclg 3406 | 1 ⊢ (𝐴 ∈ 𝑉 → {𝐴, 𝐵} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∅c0 4058 {cpr 4323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-v 3342 df-dif 3718 df-un 3720 df-nul 4059 df-sn 4322 df-pr 4324 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |