![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prnmadd | Structured version Visualization version GIF version |
Description: A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prnmadd | ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prnmax 9855 | . 2 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦) | |
2 | ltrelnq 9786 | . . . . . . 7 ⊢ <Q ⊆ (Q × Q) | |
3 | 2 | brel 5202 | . . . . . 6 ⊢ (𝐵 <Q 𝑦 → (𝐵 ∈ Q ∧ 𝑦 ∈ Q)) |
4 | 3 | simprd 478 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → 𝑦 ∈ Q) |
5 | ltexnq 9835 | . . . . . 6 ⊢ (𝑦 ∈ Q → (𝐵 <Q 𝑦 ↔ ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) | |
6 | 5 | biimpcd 239 | . . . . 5 ⊢ (𝐵 <Q 𝑦 → (𝑦 ∈ Q → ∃𝑥(𝐵 +Q 𝑥) = 𝑦)) |
7 | 4, 6 | mpd 15 | . . . 4 ⊢ (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) = 𝑦) |
8 | eleq1a 2725 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → ((𝐵 +Q 𝑥) = 𝑦 → (𝐵 +Q 𝑥) ∈ 𝐴)) | |
9 | 8 | eximdv 1886 | . . . 4 ⊢ (𝑦 ∈ 𝐴 → (∃𝑥(𝐵 +Q 𝑥) = 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
10 | 7, 9 | syl5 34 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴)) |
11 | 10 | rexlimiv 3056 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝐵 <Q 𝑦 → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
12 | 1, 11 | syl 17 | 1 ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 class class class wbr 4685 (class class class)co 6690 Qcnq 9712 +Q cplq 9715 <Q cltq 9718 Pcnp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-omul 7610 df-er 7787 df-ni 9732 df-pli 9733 df-mi 9734 df-lti 9735 df-plpq 9768 df-mpq 9769 df-ltpq 9770 df-enq 9771 df-nq 9772 df-erq 9773 df-plq 9774 df-mq 9775 df-1nq 9776 df-ltnq 9778 df-np 9841 |
This theorem is referenced by: ltexprlem1 9896 ltexprlem7 9902 |
Copyright terms: Public domain | W3C validator |