Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  prnc Structured version   Visualization version   GIF version

Theorem prnc 34098
Description: A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
prnc.1 𝐺 = (1st𝑅)
prnc.2 𝐻 = (2nd𝑅)
prnc.3 𝑋 = ran 𝐺
Assertion
Ref Expression
prnc ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝐴,𝑦

Proof of Theorem prnc
Dummy variables 𝑗 𝑢 𝑣 𝑤 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngorngo 34031 . . . . 5 (𝑅 ∈ CRingOps → 𝑅 ∈ RingOps)
2 ssrab2 3793 . . . . . . 7 {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋
32a1i 11 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋)
4 prnc.1 . . . . . . . . 9 𝐺 = (1st𝑅)
5 prnc.3 . . . . . . . . 9 𝑋 = ran 𝐺
6 eqid 2724 . . . . . . . . 9 (GId‘𝐺) = (GId‘𝐺)
74, 5, 6rngo0cl 33950 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐺) ∈ 𝑋)
87adantr 472 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ 𝑋)
9 prnc.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
106, 5, 4, 9rngolz 33953 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐺)𝐻𝐴) = (GId‘𝐺))
1110eqcomd 2730 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴))
12 oveq1 6772 . . . . . . . . . 10 (𝑦 = (GId‘𝐺) → (𝑦𝐻𝐴) = ((GId‘𝐺)𝐻𝐴))
1312eqeq2d 2734 . . . . . . . . 9 (𝑦 = (GId‘𝐺) → ((GId‘𝐺) = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)))
1413rspcev 3413 . . . . . . . 8 (((GId‘𝐺) ∈ 𝑋 ∧ (GId‘𝐺) = ((GId‘𝐺)𝐻𝐴)) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
158, 11, 14syl2anc 696 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴))
16 eqeq1 2728 . . . . . . . . 9 (𝑥 = (GId‘𝐺) → (𝑥 = (𝑦𝐻𝐴) ↔ (GId‘𝐺) = (𝑦𝐻𝐴)))
1716rexbidv 3154 . . . . . . . 8 (𝑥 = (GId‘𝐺) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
1817elrab 3469 . . . . . . 7 ((GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((GId‘𝐺) ∈ 𝑋 ∧ ∃𝑦𝑋 (GId‘𝐺) = (𝑦𝐻𝐴)))
198, 15, 18sylanbrc 701 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
20 eqeq1 2728 . . . . . . . . . . 11 (𝑥 = 𝑢 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑦𝐻𝐴)))
2120rexbidv 3154 . . . . . . . . . 10 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴)))
22 oveq1 6772 . . . . . . . . . . . 12 (𝑦 = 𝑟 → (𝑦𝐻𝐴) = (𝑟𝐻𝐴))
2322eqeq2d 2734 . . . . . . . . . . 11 (𝑦 = 𝑟 → (𝑢 = (𝑦𝐻𝐴) ↔ 𝑢 = (𝑟𝐻𝐴)))
2423cbvrexv 3275 . . . . . . . . . 10 (∃𝑦𝑋 𝑢 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴))
2521, 24syl6bb 276 . . . . . . . . 9 (𝑥 = 𝑢 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
2625elrab 3469 . . . . . . . 8 (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)))
27 eqeq1 2728 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑦𝐻𝐴)))
2827rexbidv 3154 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴)))
29 oveq1 6772 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑠 → (𝑦𝐻𝐴) = (𝑠𝐻𝐴))
3029eqeq2d 2734 . . . . . . . . . . . . . . . . 17 (𝑦 = 𝑠 → (𝑣 = (𝑦𝐻𝐴) ↔ 𝑣 = (𝑠𝐻𝐴)))
3130cbvrexv 3275 . . . . . . . . . . . . . . . 16 (∃𝑦𝑋 𝑣 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴))
3228, 31syl6bb 276 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
3332elrab 3469 . . . . . . . . . . . . . 14 (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)))
344, 9, 5rngodir 33936 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋𝐴𝑋)) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
35343exp2 1409 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ RingOps → (𝑟𝑋 → (𝑠𝑋 → (𝐴𝑋 → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴))))))
3635imp42 621 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
374, 5rngogcl 33943 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ 𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋)
38373expib 1116 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ RingOps → ((𝑟𝑋𝑠𝑋) → (𝑟𝐺𝑠) ∈ 𝑋))
3938imdistani 728 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) → (𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋))
404, 9, 5rngocl 33932 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
41403expa 1111 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋)
42 eqid 2724 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)
43 oveq1 6772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 = (𝑟𝐺𝑠) → (𝑦𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴))
4443eqeq2d 2734 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = (𝑟𝐺𝑠) → (((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)))
4544rspcev 3413 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑟𝐺𝑠) ∈ 𝑋 ∧ ((𝑟𝐺𝑠)𝐻𝐴) = ((𝑟𝐺𝑠)𝐻𝐴)) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4642, 45mpan2 709 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑟𝐺𝑠) ∈ 𝑋 → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
4746ad2antlr 765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴))
48 eqeq1 2728 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
4948rexbidv 3154 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = ((𝑟𝐺𝑠)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
5049elrab 3469 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑟𝐺𝑠)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑟𝐺𝑠)𝐻𝐴) = (𝑦𝐻𝐴)))
5141, 47, 50sylanbrc 701 . . . . . . . . . . . . . . . . . . . . 21 (((𝑅 ∈ RingOps ∧ (𝑟𝐺𝑠) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5239, 51sylan 489 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐺𝑠)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5336, 52eqeltrrd 2804 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ RingOps ∧ (𝑟𝑋𝑠𝑋)) ∧ 𝐴𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5453an32s 881 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑟𝑋𝑠𝑋)) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
5554anassrs 683 . . . . . . . . . . . . . . . . 17 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
56 oveq2 6773 . . . . . . . . . . . . . . . . . 18 (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) = ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)))
5756eleq1d 2788 . . . . . . . . . . . . . . . . 17 (𝑣 = (𝑠𝐻𝐴) → (((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺(𝑠𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5855, 57syl5ibrcom 237 . . . . . . . . . . . . . . . 16 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑠𝑋) → (𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
5958rexlimdva 3133 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
6059adantld 484 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ((𝑣𝑋 ∧ ∃𝑠𝑋 𝑣 = (𝑠𝐻𝐴)) → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
6133, 60syl5bi 232 . . . . . . . . . . . . 13 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
6261ralrimiv 3067 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
634, 9, 5rngoass 33937 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋𝐴𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
64633exp2 1409 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ RingOps → (𝑤𝑋 → (𝑟𝑋 → (𝐴𝑋 → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴))))))
6564imp42 621 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
6665an32s 881 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) = (𝑤𝐻(𝑟𝐻𝐴)))
674, 9, 5rngocl 33932 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ 𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋)
68673expib 1116 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ RingOps → ((𝑤𝑋𝑟𝑋) → (𝑤𝐻𝑟) ∈ 𝑋))
6968imdistani 728 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) → (𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋))
704, 9, 5rngocl 33932 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
71703expa 1111 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋)
72 eqid 2724 . . . . . . . . . . . . . . . . . . . 20 ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)
73 oveq1 6772 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = (𝑤𝐻𝑟) → (𝑦𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴))
7473eqeq2d 2734 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤𝐻𝑟) → (((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)))
7574rspcev 3413 . . . . . . . . . . . . . . . . . . . 20 (((𝑤𝐻𝑟) ∈ 𝑋 ∧ ((𝑤𝐻𝑟)𝐻𝐴) = ((𝑤𝐻𝑟)𝐻𝐴)) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7672, 75mpan2 709 . . . . . . . . . . . . . . . . . . 19 ((𝑤𝐻𝑟) ∈ 𝑋 → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
7776ad2antlr 765 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴))
78 eqeq1 2728 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (𝑥 = (𝑦𝐻𝐴) ↔ ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
7978rexbidv 3154 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ((𝑤𝐻𝑟)𝐻𝐴) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
8079elrab 3469 . . . . . . . . . . . . . . . . . 18 (((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (((𝑤𝐻𝑟)𝐻𝐴) ∈ 𝑋 ∧ ∃𝑦𝑋 ((𝑤𝐻𝑟)𝐻𝐴) = (𝑦𝐻𝐴)))
8171, 77, 80sylanbrc 701 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ RingOps ∧ (𝑤𝐻𝑟) ∈ 𝑋) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8269, 81sylan 489 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ RingOps ∧ (𝑤𝑋𝑟𝑋)) ∧ 𝐴𝑋) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8382an32s 881 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → ((𝑤𝐻𝑟)𝐻𝐴) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8466, 83eqeltrrd 2804 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ (𝑤𝑋𝑟𝑋)) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8584anass1rs 884 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) ∧ 𝑤𝑋) → (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8685ralrimiva 3068 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
8762, 86jca 555 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
88 oveq1 6772 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑢𝐺𝑣) = ((𝑟𝐻𝐴)𝐺𝑣))
8988eleq1d 2788 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9089ralbidv 3088 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
91 oveq2 6773 . . . . . . . . . . . . . 14 (𝑢 = (𝑟𝐻𝐴) → (𝑤𝐻𝑢) = (𝑤𝐻(𝑟𝐻𝐴)))
9291eleq1d 2788 . . . . . . . . . . . . 13 (𝑢 = (𝑟𝐻𝐴) → ((𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9392ralbidv 3088 . . . . . . . . . . . 12 (𝑢 = (𝑟𝐻𝐴) → (∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
9490, 93anbi12d 749 . . . . . . . . . . 11 (𝑢 = (𝑟𝐻𝐴) → ((∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}) ↔ (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ((𝑟𝐻𝐴)𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻(𝑟𝐻𝐴)) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9587, 94syl5ibrcom 237 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑟𝑋) → (𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9695rexlimdva 3133 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9796adantld 484 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((𝑢𝑋 ∧ ∃𝑟𝑋 𝑢 = (𝑟𝐻𝐴)) → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9826, 97syl5bi 232 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} → (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
9998ralrimiv 3067 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))
1003, 19, 993jca 1379 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
1011, 100sylan 489 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})))
1024, 9, 5, 6isidlc 34046 . . . . 5 (𝑅 ∈ CRingOps → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
103102adantr 472 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑋 ∧ (GId‘𝐺) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑢 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (∀𝑣 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} (𝑢𝐺𝑣) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑤𝑋 (𝑤𝐻𝑢) ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)}))))
104101, 103mpbird 247 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅))
105 simpr 479 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴𝑋)
1064rneqi 5459 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
1075, 106eqtri 2746 . . . . . . . . 9 𝑋 = ran (1st𝑅)
108 eqid 2724 . . . . . . . . 9 (GId‘𝐻) = (GId‘𝐻)
109107, 9, 108rngo1cl 33970 . . . . . . . 8 (𝑅 ∈ RingOps → (GId‘𝐻) ∈ 𝑋)
110109adantr 472 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → (GId‘𝐻) ∈ 𝑋)
1119, 107, 108rngolidm 33968 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ((GId‘𝐻)𝐻𝐴) = 𝐴)
112111eqcomd 2730 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → 𝐴 = ((GId‘𝐻)𝐻𝐴))
113 oveq1 6772 . . . . . . . . 9 (𝑦 = (GId‘𝐻) → (𝑦𝐻𝐴) = ((GId‘𝐻)𝐻𝐴))
114113eqeq2d 2734 . . . . . . . 8 (𝑦 = (GId‘𝐻) → (𝐴 = (𝑦𝐻𝐴) ↔ 𝐴 = ((GId‘𝐻)𝐻𝐴)))
115114rspcev 3413 . . . . . . 7 (((GId‘𝐻) ∈ 𝑋𝐴 = ((GId‘𝐻)𝐻𝐴)) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
116110, 112, 115syl2anc 696 . . . . . 6 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
1171, 116sylan 489 . . . . 5 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴))
118 eqeq1 2728 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 = (𝑦𝐻𝐴) ↔ 𝐴 = (𝑦𝐻𝐴)))
119118rexbidv 3154 . . . . . 6 (𝑥 = 𝐴 → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
120119elrab 3469 . . . . 5 (𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ (𝐴𝑋 ∧ ∃𝑦𝑋 𝐴 = (𝑦𝐻𝐴)))
121105, 117, 120sylanbrc 701 . . . 4 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → 𝐴 ∈ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
122121snssd 4448 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
123 snssg 4422 . . . . . . . . 9 (𝐴𝑋 → (𝐴𝑗 ↔ {𝐴} ⊆ 𝑗))
124123biimpar 503 . . . . . . . 8 ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → 𝐴𝑗)
1254, 9, 5idllmulcl 34051 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ (𝐴𝑗𝑦𝑋)) → (𝑦𝐻𝐴) ∈ 𝑗)
126125anassrs 683 . . . . . . . . . . . . . 14 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑦𝐻𝐴) ∈ 𝑗)
127 eleq1 2791 . . . . . . . . . . . . . 14 (𝑥 = (𝑦𝐻𝐴) → (𝑥𝑗 ↔ (𝑦𝐻𝐴) ∈ 𝑗))
128126, 127syl5ibrcom 237 . . . . . . . . . . . . 13 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑦𝑋) → (𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
129128rexlimdva 3133 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
130129adantr 472 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) ∧ 𝑥𝑋) → (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
131130ralrimiva 3068 . . . . . . . . . 10 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
132 rabss 3785 . . . . . . . . . 10 ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗 ↔ ∀𝑥𝑋 (∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴) → 𝑥𝑗))
133131, 132sylibr 224 . . . . . . . . 9 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)
134133ex 449 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → (𝐴𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
135124, 134syl5 34 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) → ((𝐴𝑋 ∧ {𝐴} ⊆ 𝑗) → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
136135expdimp 452 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑗 ∈ (Idl‘𝑅)) ∧ 𝐴𝑋) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
137136an32s 881 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐴𝑋) ∧ 𝑗 ∈ (Idl‘𝑅)) → ({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
138137ralrimiva 3068 . . . 4 ((𝑅 ∈ RingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
1391, 138sylan 489 . . 3 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))
140104, 122, 1393jca 1379 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗)))
141 snssi 4447 . . 3 (𝐴𝑋 → {𝐴} ⊆ 𝑋)
1424, 5igenval2 34097 . . 3 ((𝑅 ∈ RingOps ∧ {𝐴} ⊆ 𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
1431, 141, 142syl2an 495 . 2 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → ((𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ↔ ({𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∈ (Idl‘𝑅) ∧ {𝐴} ⊆ {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ∧ ∀𝑗 ∈ (Idl‘𝑅)({𝐴} ⊆ 𝑗 → {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)} ⊆ 𝑗))))
144140, 143mpbird 247 1 ((𝑅 ∈ CRingOps ∧ 𝐴𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥𝑋 ∣ ∃𝑦𝑋 𝑥 = (𝑦𝐻𝐴)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1596  wcel 2103  wral 3014  wrex 3015  {crab 3018  wss 3680  {csn 4285  ran crn 5219  cfv 6001  (class class class)co 6765  1st c1st 7283  2nd c2nd 7284  GIdcgi 27574  RingOpscrngo 33925  CRingOpsccring 34024  Idlcidl 34038   IdlGen cigen 34090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-grpo 27577  df-gid 27578  df-ginv 27579  df-ablo 27629  df-ass 33874  df-exid 33876  df-mgmOLD 33880  df-sgrOLD 33892  df-mndo 33898  df-rngo 33926  df-com2 34021  df-crngo 34025  df-idl 34041  df-igen 34091
This theorem is referenced by:  isfldidl  34099  ispridlc  34101
  Copyright terms: Public domain W3C validator