![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prn0 | Structured version Visualization version GIF version |
Description: A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
prn0 | ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnpi 10011 | . . 3 ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | |
2 | simpl2 1228 | . . 3 ⊢ (((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦)) → ∅ ⊊ 𝐴) | |
3 | 1, 2 | sylbi 207 | . 2 ⊢ (𝐴 ∈ P → ∅ ⊊ 𝐴) |
4 | 0pss 4155 | . 2 ⊢ (∅ ⊊ 𝐴 ↔ 𝐴 ≠ ∅) | |
5 | 3, 4 | sylib 208 | 1 ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 ∧ w3a 1070 ∀wal 1628 ∈ wcel 2144 ≠ wne 2942 ∀wral 3060 ∃wrex 3061 Vcvv 3349 ⊊ wpss 3722 ∅c0 4061 class class class wbr 4784 Qcnq 9875 <Q cltq 9881 Pcnp 9882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-v 3351 df-dif 3724 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-np 10004 |
This theorem is referenced by: 0npr 10015 npomex 10019 genpn0 10026 prlem934 10056 ltaddpr 10057 prlem936 10070 reclem2pr 10071 suplem1pr 10075 |
Copyright terms: Public domain | W3C validator |