![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmuz2 | Structured version Visualization version GIF version |
Description: A prime number is an integer greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.) |
Ref | Expression |
---|---|
prmuz2 | ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isprm4 15444 | . 2 ⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ≥‘2) ∧ ∀𝑥 ∈ (ℤ≥‘2)(𝑥 ∥ 𝑃 → 𝑥 = 𝑃))) | |
2 | 1 | simplbi 475 | 1 ⊢ (𝑃 ∈ ℙ → 𝑃 ∈ (ℤ≥‘2)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ∀wral 2941 class class class wbr 4685 ‘cfv 5926 2c2 11108 ℤ≥cuz 11725 ∥ cdvds 15027 ℙcprime 15432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-pre-sup 10052 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-sup 8389 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-rp 11871 df-seq 12842 df-exp 12901 df-cj 13883 df-re 13884 df-im 13885 df-sqrt 14019 df-abs 14020 df-dvds 15028 df-prm 15433 |
This theorem is referenced by: prmgt1 15456 prmm2nn0 15457 oddprmgt2 15458 sqnprm 15461 isprm5 15466 isprm7 15467 prmrp 15471 isprm6 15473 prmdvdsexpb 15475 prmdiv 15537 prmdiveq 15538 oddprm 15562 pcpremul 15595 pceulem 15597 pczpre 15599 pczcl 15600 pc1 15607 pczdvds 15614 pczndvds 15616 pczndvds2 15618 pcidlem 15623 pcmpt 15643 pcfaclem 15649 pcfac 15650 pockthlem 15656 pockthg 15657 prmunb 15665 prmreclem2 15668 prmgapprmolem 15812 odcau 18065 sylow3lem6 18093 gexexlem 18301 znfld 19957 wilthlem1 24839 wilthlem3 24841 wilth 24842 ppisval 24875 ppisval2 24876 chtge0 24883 isppw 24885 ppiprm 24922 chtprm 24924 chtwordi 24927 vma1 24937 fsumvma2 24984 chpval2 24988 chpchtsum 24989 chpub 24990 mersenne 24997 perfect1 24998 bposlem1 25054 lgslem1 25067 lgsval2lem 25077 lgsdirprm 25101 lgsne0 25105 lgsqrlem2 25117 gausslemma2dlem0b 25127 gausslemma2dlem4 25139 lgseisenlem1 25145 lgseisenlem3 25147 lgseisen 25149 lgsquadlem3 25152 m1lgs 25158 2sqblem 25201 chtppilimlem1 25207 rplogsumlem2 25219 rpvmasumlem 25221 dchrisum0flblem2 25243 padicabvcxp 25366 ostth3 25372 umgrhashecclwwlk 27042 clwlksfclwwlk 27049 fmtnoprmfac1 41802 fmtnoprmfac2lem1 41803 lighneallem2 41848 lighneallem4 41852 gbowgt5 41975 ztprmneprm 42450 |
Copyright terms: Public domain | W3C validator |