MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmorcht Structured version   Visualization version   GIF version

Theorem prmorcht 24885
Description: Relate the primorial (product of the first 𝑛 primes) to the Chebyshev function. (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
prmorcht.1 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
Assertion
Ref Expression
prmorcht (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))

Proof of Theorem prmorcht
Dummy variables 𝑘 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnre 11012 . . . . . . 7 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
2 chtval 24817 . . . . . . 7 (𝐴 ∈ ℝ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
31, 2syl 17 . . . . . 6 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘))
4 2eluzge1 11719 . . . . . . . . . 10 2 ∈ (ℤ‘1)
5 ppisval2 24812 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 2 ∈ (ℤ‘1)) → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
61, 4, 5sylancl 693 . . . . . . . . 9 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...(⌊‘𝐴)) ∩ ℙ))
7 nnz 11384 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
8 flid 12592 . . . . . . . . . . . 12 (𝐴 ∈ ℤ → (⌊‘𝐴) = 𝐴)
97, 8syl 17 . . . . . . . . . . 11 (𝐴 ∈ ℕ → (⌊‘𝐴) = 𝐴)
109oveq2d 6651 . . . . . . . . . 10 (𝐴 ∈ ℕ → (1...(⌊‘𝐴)) = (1...𝐴))
1110ineq1d 3805 . . . . . . . . 9 (𝐴 ∈ ℕ → ((1...(⌊‘𝐴)) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
126, 11eqtrd 2654 . . . . . . . 8 (𝐴 ∈ ℕ → ((0[,]𝐴) ∩ ℙ) = ((1...𝐴) ∩ ℙ))
1312sumeq1d 14412 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘))
14 inss1 3825 . . . . . . . 8 ((1...𝐴) ∩ ℙ) ⊆ (1...𝐴)
1514sseli 3591 . . . . . . . . . 10 (𝑘 ∈ ((1...𝐴) ∩ ℙ) → 𝑘 ∈ (1...𝐴))
16 elfznn 12355 . . . . . . . . . . . . . 14 (𝑘 ∈ (1...𝐴) → 𝑘 ∈ ℕ)
1716adantl 482 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℕ)
1817nnrpd 11855 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → 𝑘 ∈ ℝ+)
1918relogcld 24350 . . . . . . . . . . 11 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℝ)
2019recnd 10053 . . . . . . . . . 10 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (log‘𝑘) ∈ ℂ)
2115, 20sylan2 491 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ ((1...𝐴) ∩ ℙ)) → (log‘𝑘) ∈ ℂ)
2221ralrimiva 2963 . . . . . . . 8 (𝐴 ∈ ℕ → ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ)
23 fzfi 12754 . . . . . . . . . 10 (1...𝐴) ∈ Fin
2423olci 406 . . . . . . . . 9 ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)
25 sumss2 14438 . . . . . . . . 9 (((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) ∧ ((1...𝐴) ⊆ (ℤ‘1) ∨ (1...𝐴) ∈ Fin)) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2624, 25mpan2 706 . . . . . . . 8 ((((1...𝐴) ∩ ℙ) ⊆ (1...𝐴) ∧ ∀𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) ∈ ℂ) → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2714, 22, 26sylancr 694 . . . . . . 7 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((1...𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
2813, 27eqtrd 2654 . . . . . 6 (𝐴 ∈ ℕ → Σ𝑘 ∈ ((0[,]𝐴) ∩ ℙ)(log‘𝑘) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
293, 28eqtrd 2654 . . . . 5 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
30 elin 3788 . . . . . . . 8 (𝑘 ∈ ((1...𝐴) ∩ ℙ) ↔ (𝑘 ∈ (1...𝐴) ∧ 𝑘 ∈ ℙ))
3130baibr 944 . . . . . . 7 (𝑘 ∈ (1...𝐴) → (𝑘 ∈ ℙ ↔ 𝑘 ∈ ((1...𝐴) ∩ ℙ)))
3231ifbid 4099 . . . . . 6 (𝑘 ∈ (1...𝐴) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) = if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0))
3332sumeq2i 14410 . . . . 5 Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ((1...𝐴) ∩ ℙ), (log‘𝑘), 0)
3429, 33syl6eqr 2672 . . . 4 (𝐴 ∈ ℕ → (θ‘𝐴) = Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0))
35 eleq1 2687 . . . . . . . 8 (𝑛 = 𝑘 → (𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ))
36 fveq2 6178 . . . . . . . 8 (𝑛 = 𝑘 → (log‘𝑛) = (log‘𝑘))
3735, 36ifbieq1d 4100 . . . . . . 7 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, (log‘𝑛), 0) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
38 eqid 2620 . . . . . . 7 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))
39 fvex 6188 . . . . . . . 8 (log‘𝑘) ∈ V
40 0cn 10017 . . . . . . . . 9 0 ∈ ℂ
4140elexi 3208 . . . . . . . 8 0 ∈ V
4239, 41ifex 4147 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ V
4337, 38, 42fvmpt 6269 . . . . . 6 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
4417, 43syl 17 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
45 elnnuz 11709 . . . . . 6 (𝐴 ∈ ℕ ↔ 𝐴 ∈ (ℤ‘1))
4645biimpi 206 . . . . 5 (𝐴 ∈ ℕ → 𝐴 ∈ (ℤ‘1))
47 ifcl 4121 . . . . . 6 (((log‘𝑘) ∈ ℂ ∧ 0 ∈ ℂ) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4820, 40, 47sylancl 693 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, (log‘𝑘), 0) ∈ ℂ)
4944, 46, 48fsumser 14442 . . . 4 (𝐴 ∈ ℕ → Σ𝑘 ∈ (1...𝐴)if(𝑘 ∈ ℙ, (log‘𝑘), 0) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5034, 49eqtrd 2654 . . 3 (𝐴 ∈ ℕ → (θ‘𝐴) = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴))
5150fveq2d 6182 . 2 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)))
52 addcl 10003 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (𝑘 + 𝑝) ∈ ℂ)
5352adantl 482 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (𝑘 + 𝑝) ∈ ℂ)
5444, 48eqeltrd 2699 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) ∈ ℂ)
55 efadd 14805 . . . 4 ((𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
5655adantl 482 . . 3 ((𝐴 ∈ ℕ ∧ (𝑘 ∈ ℂ ∧ 𝑝 ∈ ℂ)) → (exp‘(𝑘 + 𝑝)) = ((exp‘𝑘) · (exp‘𝑝)))
57 1nn 11016 . . . . . . 7 1 ∈ ℕ
58 ifcl 4121 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 1 ∈ ℕ) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
5917, 57, 58sylancl 693 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℕ)
6059nnrpd 11855 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → if(𝑘 ∈ ℙ, 𝑘, 1) ∈ ℝ+)
6160reeflogd 24351 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))) = if(𝑘 ∈ ℙ, 𝑘, 1))
62 fvif 6191 . . . . . . 7 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1))
63 log1 24313 . . . . . . . 8 (log‘1) = 0
64 ifeq2 4082 . . . . . . . 8 ((log‘1) = 0 → if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0))
6563, 64ax-mp 5 . . . . . . 7 if(𝑘 ∈ ℙ, (log‘𝑘), (log‘1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6662, 65eqtri 2642 . . . . . 6 (log‘if(𝑘 ∈ ℙ, 𝑘, 1)) = if(𝑘 ∈ ℙ, (log‘𝑘), 0)
6744, 66syl6eqr 2672 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → ((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘) = (log‘if(𝑘 ∈ ℙ, 𝑘, 1)))
6867fveq2d 6182 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (exp‘(log‘if(𝑘 ∈ ℙ, 𝑘, 1))))
69 id 22 . . . . . . 7 (𝑛 = 𝑘𝑛 = 𝑘)
7035, 69ifbieq1d 4100 . . . . . 6 (𝑛 = 𝑘 → if(𝑛 ∈ ℙ, 𝑛, 1) = if(𝑘 ∈ ℙ, 𝑘, 1))
71 prmorcht.1 . . . . . 6 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, 𝑛, 1))
72 vex 3198 . . . . . . 7 𝑘 ∈ V
7357elexi 3208 . . . . . . 7 1 ∈ V
7472, 73ifex 4147 . . . . . 6 if(𝑘 ∈ ℙ, 𝑘, 1) ∈ V
7570, 71, 74fvmpt 6269 . . . . 5 (𝑘 ∈ ℕ → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7617, 75syl 17 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (𝐹𝑘) = if(𝑘 ∈ ℙ, 𝑘, 1))
7761, 68, 763eqtr4d 2664 . . 3 ((𝐴 ∈ ℕ ∧ 𝑘 ∈ (1...𝐴)) → (exp‘((𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0))‘𝑘)) = (𝐹𝑘))
7853, 54, 46, 56, 77seqhomo 12831 . 2 (𝐴 ∈ ℕ → (exp‘(seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (log‘𝑛), 0)))‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
7951, 78eqtrd 2654 1 (𝐴 ∈ ℕ → (exp‘(θ‘𝐴)) = (seq1( · , 𝐹)‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wcel 1988  wral 2909  cin 3566  wss 3567  ifcif 4077  cmpt 4720  cfv 5876  (class class class)co 6635  Fincfn 7940  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926  cn 11005  2c2 11055  cz 11362  cuz 11672  [,]cicc 12163  ...cfz 12311  cfl 12574  seqcseq 12784  Σcsu 14397  expce 14773  cprime 15366  logclog 24282  θccht 24798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-inf2 8523  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999  ax-addf 10000  ax-mulf 10001
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-fal 1487  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-iin 4514  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-se 5064  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-isom 5885  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-of 6882  df-om 7051  df-1st 7153  df-2nd 7154  df-supp 7281  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-pm 7845  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-fsupp 8261  df-fi 8302  df-sup 8333  df-inf 8334  df-oi 8400  df-card 8750  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-q 11774  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-ioo 12164  df-ioc 12165  df-ico 12166  df-icc 12167  df-fz 12312  df-fzo 12450  df-fl 12576  df-mod 12652  df-seq 12785  df-exp 12844  df-fac 13044  df-bc 13073  df-hash 13101  df-shft 13788  df-cj 13820  df-re 13821  df-im 13822  df-sqrt 13956  df-abs 13957  df-limsup 14183  df-clim 14200  df-rlim 14201  df-sum 14398  df-ef 14779  df-sin 14781  df-cos 14782  df-pi 14784  df-dvds 14965  df-prm 15367  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-sets 15845  df-ress 15846  df-plusg 15935  df-mulr 15936  df-starv 15937  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-unif 15946  df-hom 15947  df-cco 15948  df-rest 16064  df-topn 16065  df-0g 16083  df-gsum 16084  df-topgen 16085  df-pt 16086  df-prds 16089  df-xrs 16143  df-qtop 16148  df-imas 16149  df-xps 16151  df-mre 16227  df-mrc 16228  df-acs 16230  df-mgm 17223  df-sgrp 17265  df-mnd 17276  df-submnd 17317  df-mulg 17522  df-cntz 17731  df-cmn 18176  df-psmet 19719  df-xmet 19720  df-met 19721  df-bl 19722  df-mopn 19723  df-fbas 19724  df-fg 19725  df-cnfld 19728  df-top 20680  df-topon 20697  df-topsp 20718  df-bases 20731  df-cld 20804  df-ntr 20805  df-cls 20806  df-nei 20883  df-lp 20921  df-perf 20922  df-cn 21012  df-cnp 21013  df-haus 21100  df-tx 21346  df-hmeo 21539  df-fil 21631  df-fm 21723  df-flim 21724  df-flf 21725  df-xms 22106  df-ms 22107  df-tms 22108  df-cncf 22662  df-limc 23611  df-dv 23612  df-log 24284  df-cht 24804
This theorem is referenced by:  chtublem  24917  bposlem6  24995
  Copyright terms: Public domain W3C validator